连接患者临床管理与公共卫生响应的本体论,以加强传染病监测:设计科学研究。

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES JMIR Formative Research Pub Date : 2024-09-26 DOI:10.2196/53711
Sachiko Lim, Paul Johannesson
{"title":"连接患者临床管理与公共卫生响应的本体论,以加强传染病监测:设计科学研究。","authors":"Sachiko Lim, Paul Johannesson","doi":"10.2196/53711","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Novel surveillance approaches using digital technologies, including the Internet of Things (IoT), have evolved, enhancing traditional infectious disease surveillance systems by enabling real-time detection of outbreaks and reaching a wider population. However, disparate, heterogenous infectious disease surveillance systems often operate in silos due to a lack of interoperability. As a life-changing clinical use case, the COVID-19 pandemic has manifested that a lack of interoperability can severely inhibit public health responses to emerging infectious diseases. Interoperability is thus critical for building a robust ecosystem of infectious disease surveillance and enhancing preparedness for future outbreaks. The primary enabler for semantic interoperability is ontology.</p><p><strong>Objective: </strong>This study aims to design the IoT-based management of infectious disease ontology (IoT-MIDO) to enhance data sharing and integration of data collected from IoT-driven patient health monitoring, clinical management of individual patients, and disparate heterogeneous infectious disease surveillance.</p><p><strong>Methods: </strong>The ontology modeling approach was chosen for its semantic richness in knowledge representation, flexibility, ease of extensibility, and capability for knowledge inference and reasoning. The IoT-MIDO was developed using the basic formal ontology (BFO) as the top-level ontology. We reused the classes from existing BFO-based ontologies as much as possible to maximize the interoperability with other BFO-based ontologies and databases that rely on them. We formulated the competency questions as requirements for the ontology to achieve the intended goals.</p><p><strong>Results: </strong>We designed an ontology to integrate data from heterogeneous sources, including IoT-driven patient monitoring, clinical management of individual patients, and infectious disease surveillance systems. This integration aims to facilitate the collaboration between clinical care and public health domains. We also demonstrate five use cases using the simplified ontological models to show the potential applications of IoT-MIDO: (1) IoT-driven patient monitoring, risk assessment, early warning, and risk management; (2) clinical management of patients with infectious diseases; (3) epidemic risk analysis for timely response at the public health level; (4) infectious disease surveillance; and (5) transforming patient information into surveillance information.</p><p><strong>Conclusions: </strong>The development of the IoT-MIDO was driven by competency questions. Being able to answer all the formulated competency questions, we successfully demonstrated that our ontology has the potential to facilitate data sharing and integration for orchestrating IoT-driven patient health monitoring in the context of an infectious disease epidemic, clinical patient management, infectious disease surveillance, and epidemic risk analysis. The novelty and uniqueness of the ontology lie in building a bridge to link IoT-based individual patient monitoring and early warning based on patient risk assessment to infectious disease epidemic surveillance at the public health level. The ontology can also serve as a starting point to enable potential decision support systems, providing actionable insights to support public health organizations and practitioners in making informed decisions in a timely manner.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467600/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Ontology to Bridge the Clinical Management of Patients and Public Health Responses for Strengthening Infectious Disease Surveillance: Design Science Study.\",\"authors\":\"Sachiko Lim, Paul Johannesson\",\"doi\":\"10.2196/53711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Novel surveillance approaches using digital technologies, including the Internet of Things (IoT), have evolved, enhancing traditional infectious disease surveillance systems by enabling real-time detection of outbreaks and reaching a wider population. However, disparate, heterogenous infectious disease surveillance systems often operate in silos due to a lack of interoperability. As a life-changing clinical use case, the COVID-19 pandemic has manifested that a lack of interoperability can severely inhibit public health responses to emerging infectious diseases. Interoperability is thus critical for building a robust ecosystem of infectious disease surveillance and enhancing preparedness for future outbreaks. The primary enabler for semantic interoperability is ontology.</p><p><strong>Objective: </strong>This study aims to design the IoT-based management of infectious disease ontology (IoT-MIDO) to enhance data sharing and integration of data collected from IoT-driven patient health monitoring, clinical management of individual patients, and disparate heterogeneous infectious disease surveillance.</p><p><strong>Methods: </strong>The ontology modeling approach was chosen for its semantic richness in knowledge representation, flexibility, ease of extensibility, and capability for knowledge inference and reasoning. The IoT-MIDO was developed using the basic formal ontology (BFO) as the top-level ontology. We reused the classes from existing BFO-based ontologies as much as possible to maximize the interoperability with other BFO-based ontologies and databases that rely on them. We formulated the competency questions as requirements for the ontology to achieve the intended goals.</p><p><strong>Results: </strong>We designed an ontology to integrate data from heterogeneous sources, including IoT-driven patient monitoring, clinical management of individual patients, and infectious disease surveillance systems. This integration aims to facilitate the collaboration between clinical care and public health domains. We also demonstrate five use cases using the simplified ontological models to show the potential applications of IoT-MIDO: (1) IoT-driven patient monitoring, risk assessment, early warning, and risk management; (2) clinical management of patients with infectious diseases; (3) epidemic risk analysis for timely response at the public health level; (4) infectious disease surveillance; and (5) transforming patient information into surveillance information.</p><p><strong>Conclusions: </strong>The development of the IoT-MIDO was driven by competency questions. Being able to answer all the formulated competency questions, we successfully demonstrated that our ontology has the potential to facilitate data sharing and integration for orchestrating IoT-driven patient health monitoring in the context of an infectious disease epidemic, clinical patient management, infectious disease surveillance, and epidemic risk analysis. The novelty and uniqueness of the ontology lie in building a bridge to link IoT-based individual patient monitoring and early warning based on patient risk assessment to infectious disease epidemic surveillance at the public health level. The ontology can also serve as a starting point to enable potential decision support systems, providing actionable insights to support public health organizations and practitioners in making informed decisions in a timely manner.</p>\",\"PeriodicalId\":14841,\"journal\":{\"name\":\"JMIR Formative Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Formative Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/53711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/53711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:利用包括物联网(IoT)在内的数字技术的新型监测方法不断发展,通过实时检测疫情和覆盖更广泛的人群,加强了传统的传染病监测系统。然而,由于缺乏互操作性,不同的、异构的传染病监测系统往往是各自为政。COVID-19 大流行作为一个改变生命的临床用例,表明缺乏互操作性会严重阻碍对新发传染病的公共卫生响应。因此,互操作性对于建立健全的传染病监控生态系统和加强对未来疫情的防范至关重要。本体是实现语义互操作性的主要手段:本研究旨在设计基于物联网的传染病本体管理(IoT-MIDO),以加强从物联网驱动的患者健康监测、个体患者的临床管理以及不同的异构传染病监测中收集的数据的共享和整合:方法:选择本体建模方法是因为它具有丰富的知识表示语义、灵活性、易扩展性以及知识推理和推理能力。IoT-MIDO以基本形式本体(BFO)为顶层本体进行开发。我们尽可能地重复使用了现有的基于 BFO 的本体中的类,以最大限度地提高与其他基于 BFO 的本体和依赖于它们的数据库之间的互操作性。我们将能力问题作为本体的要求,以实现预期目标:我们设计了一个本体来整合来自不同来源的数据,包括物联网驱动的患者监测、个体患者的临床管理和传染病监测系统。这种整合旨在促进临床护理和公共卫生领域之间的合作。我们还利用简化的本体论模型演示了五个用例,以展示物联网-MIDO的潜在应用:(1)物联网驱动的患者监测、风险评估、预警和风险管理;(2)传染病患者的临床管理;(3)流行病风险分析,以便在公共卫生层面及时做出反应;(4)传染病监测;以及(5)将患者信息转化为监测信息:IoT-MIDO的开发是由能力问题驱动的。通过回答所有能力问题,我们成功地证明了我们的本体具有促进数据共享和整合的潜力,可在传染病流行、临床患者管理、传染病监测和流行风险分析的背景下协调物联网驱动的患者健康监测。本体的新颖性和独特性在于搭建了一座桥梁,将基于物联网的个体患者监测和基于患者风险评估的预警与公共卫生层面的传染病疫情监测联系起来。本体论还可以作为一个起点,启用潜在的决策支持系统,提供可操作的见解,支持公共卫生组织和从业人员及时做出知情决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Ontology to Bridge the Clinical Management of Patients and Public Health Responses for Strengthening Infectious Disease Surveillance: Design Science Study.

Background: Novel surveillance approaches using digital technologies, including the Internet of Things (IoT), have evolved, enhancing traditional infectious disease surveillance systems by enabling real-time detection of outbreaks and reaching a wider population. However, disparate, heterogenous infectious disease surveillance systems often operate in silos due to a lack of interoperability. As a life-changing clinical use case, the COVID-19 pandemic has manifested that a lack of interoperability can severely inhibit public health responses to emerging infectious diseases. Interoperability is thus critical for building a robust ecosystem of infectious disease surveillance and enhancing preparedness for future outbreaks. The primary enabler for semantic interoperability is ontology.

Objective: This study aims to design the IoT-based management of infectious disease ontology (IoT-MIDO) to enhance data sharing and integration of data collected from IoT-driven patient health monitoring, clinical management of individual patients, and disparate heterogeneous infectious disease surveillance.

Methods: The ontology modeling approach was chosen for its semantic richness in knowledge representation, flexibility, ease of extensibility, and capability for knowledge inference and reasoning. The IoT-MIDO was developed using the basic formal ontology (BFO) as the top-level ontology. We reused the classes from existing BFO-based ontologies as much as possible to maximize the interoperability with other BFO-based ontologies and databases that rely on them. We formulated the competency questions as requirements for the ontology to achieve the intended goals.

Results: We designed an ontology to integrate data from heterogeneous sources, including IoT-driven patient monitoring, clinical management of individual patients, and infectious disease surveillance systems. This integration aims to facilitate the collaboration between clinical care and public health domains. We also demonstrate five use cases using the simplified ontological models to show the potential applications of IoT-MIDO: (1) IoT-driven patient monitoring, risk assessment, early warning, and risk management; (2) clinical management of patients with infectious diseases; (3) epidemic risk analysis for timely response at the public health level; (4) infectious disease surveillance; and (5) transforming patient information into surveillance information.

Conclusions: The development of the IoT-MIDO was driven by competency questions. Being able to answer all the formulated competency questions, we successfully demonstrated that our ontology has the potential to facilitate data sharing and integration for orchestrating IoT-driven patient health monitoring in the context of an infectious disease epidemic, clinical patient management, infectious disease surveillance, and epidemic risk analysis. The novelty and uniqueness of the ontology lie in building a bridge to link IoT-based individual patient monitoring and early warning based on patient risk assessment to infectious disease epidemic surveillance at the public health level. The ontology can also serve as a starting point to enable potential decision support systems, providing actionable insights to support public health organizations and practitioners in making informed decisions in a timely manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
期刊最新文献
Insights From the Development of a Dynamic Consent Platform for the Australians Together Health Initiative (ATHENA) Program: Interview and Survey Study. Remote Patient Monitoring and Digital Therapeutics Enhancing the Continuum of Care in Heart Failure: Nonrandomized Pilot Study. A Deep Learning Model to Predict Breast Implant Texture Types Using Ultrasonography Images: Feasibility Development Study. A Food Intake Estimation System Using an Artificial Intelligence-Based Model for Estimating Leftover Hospital Liquid Food in Clinical Environments: Development and Validation Study. Codesigning a Digital Type 2 Diabetes Risk Communication Tool in Singapore: Qualitative Participatory Action Research Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1