{"title":"一种晚期生存的古脊椎动物(鲸目动物:Kekenodontidae)的听觉能力,以及对新鲸类声音进化的影响。","authors":"Joshua Corrie, Travis Park","doi":"10.1111/joa.14137","DOIUrl":null,"url":null,"abstract":"<p><p>Kekenodontids are the only known archaeocetes (stem cetaceans) from the late Oligocene. They possess a unique combination of morphological features seen in both more primitive Eocene basilosaurid archaeocetes and more derived Neoceti (mysticetes and odontocetes). However, much remains unknown about the clade, including its acoustic biology. Based on its phylogenetic position crownward to basilosaurids as the latest-diverging archaeocete, we hypothesize that kekenodontids would be specialized for hearing low-frequency sounds. Here, we provide the first report on the cochlear anatomy of a kekenodontid using the holotype of Kekenodon onamata from New Zealand. We compare the cochlear morphology of K. onamata to a sample of extinct and extant cetaceans and quantify shape differences using three-dimensional geometric morphometrics. The analyses show that K. onamata was indeed adapted to hear low frequencies and suggests low-frequency hearing may be a characteristic of raptorial macrophagous fossil cetaceans in contrast to infrasonic bulk filter-feeding mysticetes and ultrasonic echolocating odontocetes.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hearing abilities of a late-surviving archaeocete (Cetacea: Kekenodontidae), and implications for the evolution of sound in Neoceti.\",\"authors\":\"Joshua Corrie, Travis Park\",\"doi\":\"10.1111/joa.14137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kekenodontids are the only known archaeocetes (stem cetaceans) from the late Oligocene. They possess a unique combination of morphological features seen in both more primitive Eocene basilosaurid archaeocetes and more derived Neoceti (mysticetes and odontocetes). However, much remains unknown about the clade, including its acoustic biology. Based on its phylogenetic position crownward to basilosaurids as the latest-diverging archaeocete, we hypothesize that kekenodontids would be specialized for hearing low-frequency sounds. Here, we provide the first report on the cochlear anatomy of a kekenodontid using the holotype of Kekenodon onamata from New Zealand. We compare the cochlear morphology of K. onamata to a sample of extinct and extant cetaceans and quantify shape differences using three-dimensional geometric morphometrics. The analyses show that K. onamata was indeed adapted to hear low frequencies and suggests low-frequency hearing may be a characteristic of raptorial macrophagous fossil cetaceans in contrast to infrasonic bulk filter-feeding mysticetes and ultrasonic echolocating odontocetes.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14137\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14137","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Hearing abilities of a late-surviving archaeocete (Cetacea: Kekenodontidae), and implications for the evolution of sound in Neoceti.
Kekenodontids are the only known archaeocetes (stem cetaceans) from the late Oligocene. They possess a unique combination of morphological features seen in both more primitive Eocene basilosaurid archaeocetes and more derived Neoceti (mysticetes and odontocetes). However, much remains unknown about the clade, including its acoustic biology. Based on its phylogenetic position crownward to basilosaurids as the latest-diverging archaeocete, we hypothesize that kekenodontids would be specialized for hearing low-frequency sounds. Here, we provide the first report on the cochlear anatomy of a kekenodontid using the holotype of Kekenodon onamata from New Zealand. We compare the cochlear morphology of K. onamata to a sample of extinct and extant cetaceans and quantify shape differences using three-dimensional geometric morphometrics. The analyses show that K. onamata was indeed adapted to hear low frequencies and suggests low-frequency hearing may be a characteristic of raptorial macrophagous fossil cetaceans in contrast to infrasonic bulk filter-feeding mysticetes and ultrasonic echolocating odontocetes.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.