Klaudia Žigová , Zuzana Marčeková , Tatiana Petrovičová , Katarína Lorková , František Čacho , Vladimír Krasňan , Martin Rebroš
{"title":"重组 Zymomonas mobilis 锌依赖性醇脱氢酶 I 的强化功能表达。","authors":"Klaudia Žigová , Zuzana Marčeková , Tatiana Petrovičová , Katarína Lorková , František Čacho , Vladimír Krasňan , Martin Rebroš","doi":"10.1016/j.jbiotec.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Alcohol dehydrogenase I from <em>Zymomonas mobilis</em> (zmADH1) is a zinc-dependent oxidoreductase that catalyses the oxidation of primary or secondary alcohols to the corresponding aldehydes or ketones using NAD<sup>+</sup>/NADH as a cofactor. Efforts to express zmADH1 in <em>Escherichia coli</em> in a soluble form have been laden with solubility difficulties. A soluble form of recombinant zmADH1 was achieved by the addition of 1 mM zinc into media. Zinc addition facilitates the proper folding of recombinant zmADH1 and significantly reduces the formation of inclusion bodies. The yield of recombinant zmADH1 represents approximately 30 mg/1 L Luria-Bertani media. Intensified production in fermenters showed a striking difference between the specific and total activities of zmADH1 produced at different zinc concentrations. The zmADH1 showed an affinity to medium-chain alcohols, especially 1-pentanol, which could be used in new greener routes for preparation of aldehydes and alcohols.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"395 ","pages":"Pages 141-148"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intensified functional expression of recombinant Zymomonas mobilis zinc-dependent alcohol dehydrogenase I\",\"authors\":\"Klaudia Žigová , Zuzana Marčeková , Tatiana Petrovičová , Katarína Lorková , František Čacho , Vladimír Krasňan , Martin Rebroš\",\"doi\":\"10.1016/j.jbiotec.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alcohol dehydrogenase I from <em>Zymomonas mobilis</em> (zmADH1) is a zinc-dependent oxidoreductase that catalyses the oxidation of primary or secondary alcohols to the corresponding aldehydes or ketones using NAD<sup>+</sup>/NADH as a cofactor. Efforts to express zmADH1 in <em>Escherichia coli</em> in a soluble form have been laden with solubility difficulties. A soluble form of recombinant zmADH1 was achieved by the addition of 1 mM zinc into media. Zinc addition facilitates the proper folding of recombinant zmADH1 and significantly reduces the formation of inclusion bodies. The yield of recombinant zmADH1 represents approximately 30 mg/1 L Luria-Bertani media. Intensified production in fermenters showed a striking difference between the specific and total activities of zmADH1 produced at different zinc concentrations. The zmADH1 showed an affinity to medium-chain alcohols, especially 1-pentanol, which could be used in new greener routes for preparation of aldehydes and alcohols.</div></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\"395 \",\"pages\":\"Pages 141-148\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624002554\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002554","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Intensified functional expression of recombinant Zymomonas mobilis zinc-dependent alcohol dehydrogenase I
Alcohol dehydrogenase I from Zymomonas mobilis (zmADH1) is a zinc-dependent oxidoreductase that catalyses the oxidation of primary or secondary alcohols to the corresponding aldehydes or ketones using NAD+/NADH as a cofactor. Efforts to express zmADH1 in Escherichia coli in a soluble form have been laden with solubility difficulties. A soluble form of recombinant zmADH1 was achieved by the addition of 1 mM zinc into media. Zinc addition facilitates the proper folding of recombinant zmADH1 and significantly reduces the formation of inclusion bodies. The yield of recombinant zmADH1 represents approximately 30 mg/1 L Luria-Bertani media. Intensified production in fermenters showed a striking difference between the specific and total activities of zmADH1 produced at different zinc concentrations. The zmADH1 showed an affinity to medium-chain alcohols, especially 1-pentanol, which could be used in new greener routes for preparation of aldehydes and alcohols.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.