开发可在立克次体中发挥作用的诱导启动子和 CRISPRi 质粒。

IF 2.7 3区 生物学 Q3 MICROBIOLOGY Journal of Bacteriology Pub Date : 2024-10-24 Epub Date: 2024-09-30 DOI:10.1128/jb.00367-24
Adam M Nock, Tina R Clark, Ted Hackstadt
{"title":"开发可在立克次体中发挥作用的诱导启动子和 CRISPRi 质粒。","authors":"Adam M Nock, Tina R Clark, Ted Hackstadt","doi":"10.1128/jb.00367-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Rickettsia rickettsii</i> is an obligate intracellular, tick-borne bacterium that causes Rocky Mountain spotted fever. The demanding nature of cultivating these bacteria within host cells and the labor involved in obtaining clonal isolates have severely limited progress regarding the development of compatible genetic tools to study this pathogen. Conditional expression of genes that might be toxic or have an otherwise undesirable effect is the next logical goal to expand upon the constitutive expression plasmids generated thus far. We describe the construction of an inducible promoter system based on the tet-On system, leveraging design elements from the anhydrotetracycline-inducible promoter system used for <i>Borrelia burgdorferi</i> and one of the few characterized rickettsial promoters for the outer membrane gene, <i>rompB</i> (<i>sca5</i>). The functionality of this promoter is demonstrated via fluorescence of induced mScarlet production and was then used to construct a generalized inducible expression vector for <i>R. rickettsii</i>. The development of a functional inducible promoter was then applied to the construction of a CRISPR interference plasmid as a means to reduce or essentially silence the transcription of targeted genes. We demonstrate the viability of a simplified, single vector CRISPRi system to disrupt gene expression in <i>R. rickettsii</i> targeting the type IV secreted effector <i>rarP2</i> and autotransporter peptidase <i>rapL</i> as examples.</p><p><strong>Importance: </strong>This work expands upon the genetic toolbox available for <i>R. rickettsii</i>. We describe both an inducible promoter and CRISPRi system compatible with <i>Rickettsia</i>, which may provide key instruments for the development of further tools. The development of an inducible promoter system allows for the overexpression of genes, which might be toxic when expressed constitutively. The CRISPRi system enables the ability to knock down genes with specificity, and critically, genes that may be essential and could not otherwise be knocked out. These developments may provide the foundation for unlocking genetic tools for other pathogens of the order Rickettsiales, such as the <i>Anaplasma</i>, <i>Orientia</i>, and <i>Ehrlichia</i> for which there are currently no inducible promoters or CRISPRi platforms.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0036724"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500500/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of inducible promoter and CRISPRi plasmids functional in <i>Rickettsia rickettsii</i>.\",\"authors\":\"Adam M Nock, Tina R Clark, Ted Hackstadt\",\"doi\":\"10.1128/jb.00367-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Rickettsia rickettsii</i> is an obligate intracellular, tick-borne bacterium that causes Rocky Mountain spotted fever. The demanding nature of cultivating these bacteria within host cells and the labor involved in obtaining clonal isolates have severely limited progress regarding the development of compatible genetic tools to study this pathogen. Conditional expression of genes that might be toxic or have an otherwise undesirable effect is the next logical goal to expand upon the constitutive expression plasmids generated thus far. We describe the construction of an inducible promoter system based on the tet-On system, leveraging design elements from the anhydrotetracycline-inducible promoter system used for <i>Borrelia burgdorferi</i> and one of the few characterized rickettsial promoters for the outer membrane gene, <i>rompB</i> (<i>sca5</i>). The functionality of this promoter is demonstrated via fluorescence of induced mScarlet production and was then used to construct a generalized inducible expression vector for <i>R. rickettsii</i>. The development of a functional inducible promoter was then applied to the construction of a CRISPR interference plasmid as a means to reduce or essentially silence the transcription of targeted genes. We demonstrate the viability of a simplified, single vector CRISPRi system to disrupt gene expression in <i>R. rickettsii</i> targeting the type IV secreted effector <i>rarP2</i> and autotransporter peptidase <i>rapL</i> as examples.</p><p><strong>Importance: </strong>This work expands upon the genetic toolbox available for <i>R. rickettsii</i>. We describe both an inducible promoter and CRISPRi system compatible with <i>Rickettsia</i>, which may provide key instruments for the development of further tools. The development of an inducible promoter system allows for the overexpression of genes, which might be toxic when expressed constitutively. The CRISPRi system enables the ability to knock down genes with specificity, and critically, genes that may be essential and could not otherwise be knocked out. These developments may provide the foundation for unlocking genetic tools for other pathogens of the order Rickettsiales, such as the <i>Anaplasma</i>, <i>Orientia</i>, and <i>Ehrlichia</i> for which there are currently no inducible promoters or CRISPRi platforms.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0036724\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00367-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00367-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

立克次体(Rickettsia rickettsii)是一种引起落基山斑疹热的细胞内蜱传细菌。在宿主细胞内培养这种细菌的要求很高,而且获得克隆分离物也很费力,这些都严重限制了开发兼容基因工具来研究这种病原体的进展。有条件地表达可能具有毒性或其他不良影响的基因,是在迄今为止生成的组成型表达质粒基础上的下一个合理目标。我们介绍了基于 tet-On 系统的诱导型启动子系统的构建过程,该系统利用了用于鲍曼不动杆菌的氢四环素诱导型启动子系统和为数不多的立克次体外膜基因 rompB (sca5) 启动子的设计元素。该启动子的功能通过诱导 mScarlet 生成的荧光来证明,随后被用于构建立克次体的通用诱导表达载体。功能性诱导启动子的开发随后被应用于构建 CRISPR 干扰质粒,以减少或基本抑制目标基因的转录。我们展示了简化的单载体CRISPRi系统破坏立克次体中基因表达的可行性,以IV型分泌效应物rarP2和自转运肽酶rapL为例:这项工作扩展了立克次体的基因工具箱。我们描述了与立克次体兼容的诱导型启动子和CRISPRi系统,这可能为开发更多工具提供关键手段。诱导型启动子系统的开发允许过量表达基因,而这些基因在组成型表达时可能是有毒的。CRISPRi 系统能够特异性地敲除基因,关键是能够敲除那些可能是重要的、但无法以其他方式敲除的基因。这些进展可能为立克次体目其他病原体(如阿那普拉丝虫、东方虫和埃里希氏菌)的遗传工具的开发奠定基础,目前还没有针对这些病原体的诱导型启动子或 CRISPRi 平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of inducible promoter and CRISPRi plasmids functional in Rickettsia rickettsii.

Rickettsia rickettsii is an obligate intracellular, tick-borne bacterium that causes Rocky Mountain spotted fever. The demanding nature of cultivating these bacteria within host cells and the labor involved in obtaining clonal isolates have severely limited progress regarding the development of compatible genetic tools to study this pathogen. Conditional expression of genes that might be toxic or have an otherwise undesirable effect is the next logical goal to expand upon the constitutive expression plasmids generated thus far. We describe the construction of an inducible promoter system based on the tet-On system, leveraging design elements from the anhydrotetracycline-inducible promoter system used for Borrelia burgdorferi and one of the few characterized rickettsial promoters for the outer membrane gene, rompB (sca5). The functionality of this promoter is demonstrated via fluorescence of induced mScarlet production and was then used to construct a generalized inducible expression vector for R. rickettsii. The development of a functional inducible promoter was then applied to the construction of a CRISPR interference plasmid as a means to reduce or essentially silence the transcription of targeted genes. We demonstrate the viability of a simplified, single vector CRISPRi system to disrupt gene expression in R. rickettsii targeting the type IV secreted effector rarP2 and autotransporter peptidase rapL as examples.

Importance: This work expands upon the genetic toolbox available for R. rickettsii. We describe both an inducible promoter and CRISPRi system compatible with Rickettsia, which may provide key instruments for the development of further tools. The development of an inducible promoter system allows for the overexpression of genes, which might be toxic when expressed constitutively. The CRISPRi system enables the ability to knock down genes with specificity, and critically, genes that may be essential and could not otherwise be knocked out. These developments may provide the foundation for unlocking genetic tools for other pathogens of the order Rickettsiales, such as the Anaplasma, Orientia, and Ehrlichia for which there are currently no inducible promoters or CRISPRi platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
期刊最新文献
CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in Staphylococcus aureus. Impact of high-speed nanodroplets on various pathogenic bacterial cell walls. Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research. A flagellar accessory protein links chemotaxis to surface sensing. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1