{"title":"LncRNA ALMS1-IT1 通过激活 STAT3 调节结直肠癌的铁变态反应和免疫逃避。","authors":"Zhaoying Wu, Junwei Zou, Hao Xie, Jie Wang, Yong Huang, Fei Liu, Chungen Xing","doi":"10.1111/jcmm.70103","DOIUrl":null,"url":null,"abstract":"<p>Colorectal cancer (CRC) represents a significant malignancy within the digestive system, characterized by high incidence and mortality rates. In recent years, molecular targeted therapy has been introduced as a supplementary strategy in CRC management, complementing traditional modalities such as surgery, radiation and chemotherapy. The identification of novel therapeutic targets for CRC remains critically important. Ferroptosis, a unique form of programmed cell death distinct from apoptosis and necrosis, is characterized by cellular damage resulting from iron-induced lipid peroxidation, leading to cell death. This study utilizes a combination of bioinformatics analysis and clinical specimen validation to demonstrate that the long non-coding RNA (lncRNA) ALMS1-IT1 is significantly upregulated in CRC tissues and strongly associated with ferroptosis. Through a series of experimental investigations, we have determined that ALMS1-IT1 negatively regulates ferroptosis in CRC cells, thereby promoting cancer growth and metastasis, acting as an oncogenic factor. Furthermore, we explored the molecular interactions of ALMS1-IT1, revealing its role in activating STAT3 protein phosphorylation. This activation enhances the immune evasion capabilities of CRC cells. Rescue experiments indicated that STAT3 activation is essential for ALMS1-IT1's suppression of ferroptosis, immune evasion and oncogenic behaviour in CRC. Our findings underscore the critical biological role of ALMS1-IT1 in the progression of CRC and suggest its potential as a target for drug development.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 18","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436373/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA ALMS1-IT1 modulates ferroptosis and immune evasion in colorectal cancer through activating STAT3\",\"authors\":\"Zhaoying Wu, Junwei Zou, Hao Xie, Jie Wang, Yong Huang, Fei Liu, Chungen Xing\",\"doi\":\"10.1111/jcmm.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Colorectal cancer (CRC) represents a significant malignancy within the digestive system, characterized by high incidence and mortality rates. In recent years, molecular targeted therapy has been introduced as a supplementary strategy in CRC management, complementing traditional modalities such as surgery, radiation and chemotherapy. The identification of novel therapeutic targets for CRC remains critically important. Ferroptosis, a unique form of programmed cell death distinct from apoptosis and necrosis, is characterized by cellular damage resulting from iron-induced lipid peroxidation, leading to cell death. This study utilizes a combination of bioinformatics analysis and clinical specimen validation to demonstrate that the long non-coding RNA (lncRNA) ALMS1-IT1 is significantly upregulated in CRC tissues and strongly associated with ferroptosis. Through a series of experimental investigations, we have determined that ALMS1-IT1 negatively regulates ferroptosis in CRC cells, thereby promoting cancer growth and metastasis, acting as an oncogenic factor. Furthermore, we explored the molecular interactions of ALMS1-IT1, revealing its role in activating STAT3 protein phosphorylation. This activation enhances the immune evasion capabilities of CRC cells. Rescue experiments indicated that STAT3 activation is essential for ALMS1-IT1's suppression of ferroptosis, immune evasion and oncogenic behaviour in CRC. Our findings underscore the critical biological role of ALMS1-IT1 in the progression of CRC and suggest its potential as a target for drug development.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"28 18\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LncRNA ALMS1-IT1 modulates ferroptosis and immune evasion in colorectal cancer through activating STAT3
Colorectal cancer (CRC) represents a significant malignancy within the digestive system, characterized by high incidence and mortality rates. In recent years, molecular targeted therapy has been introduced as a supplementary strategy in CRC management, complementing traditional modalities such as surgery, radiation and chemotherapy. The identification of novel therapeutic targets for CRC remains critically important. Ferroptosis, a unique form of programmed cell death distinct from apoptosis and necrosis, is characterized by cellular damage resulting from iron-induced lipid peroxidation, leading to cell death. This study utilizes a combination of bioinformatics analysis and clinical specimen validation to demonstrate that the long non-coding RNA (lncRNA) ALMS1-IT1 is significantly upregulated in CRC tissues and strongly associated with ferroptosis. Through a series of experimental investigations, we have determined that ALMS1-IT1 negatively regulates ferroptosis in CRC cells, thereby promoting cancer growth and metastasis, acting as an oncogenic factor. Furthermore, we explored the molecular interactions of ALMS1-IT1, revealing its role in activating STAT3 protein phosphorylation. This activation enhances the immune evasion capabilities of CRC cells. Rescue experiments indicated that STAT3 activation is essential for ALMS1-IT1's suppression of ferroptosis, immune evasion and oncogenic behaviour in CRC. Our findings underscore the critical biological role of ALMS1-IT1 in the progression of CRC and suggest its potential as a target for drug development.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.