根据非线性响应理论得出的 PRISM 方程的封闭性。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-09-28 DOI:10.1063/5.0226882
James P Donley
{"title":"根据非线性响应理论得出的 PRISM 方程的封闭性。","authors":"James P Donley","doi":"10.1063/5.0226882","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinear response theory is employed to derive a closure to the polymer reference interaction site model equation. The closure applies to a liquid of neutral polymers at melt densities. It can be considered a molecular generalization of the mean spherical approximation (MSA) closure of Lebowitz and Percus to the atomic Ornstein-Zernike (OZ) equation and is similar in some aspects to the reference \"molecular\" MSA (R-MMSA) closure of Schweizer and Yethiraj to PRISM. For a model binary blend of freely-jointed chains, the new closure predicts an unmixing critical temperature, Tc, via the susceptibility route that scales linearly with molecular weight, N, in agreement with Flory theory. Predictions for Tc of the new closure differ greatest from those of the R-MMSA at intermediate N, the latter being about 40% higher than the former there, but at large N, both theories give about the same values. For an isotopic blend of polyethylene, the new and R-MMSA closures predict a Tc about 25% higher than the experimental value, which is only moderately less accurate than the prediction of atomic OZ-MSA theory for Tc of methane. In this way, the derivation and its consequences help to identify the ingredients in a theory needed to properly model the equilibrium properties of a polymeric liquid at both short and long lengthscales.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closure to the PRISM equation derived from nonlinear response theory.\",\"authors\":\"James P Donley\",\"doi\":\"10.1063/5.0226882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonlinear response theory is employed to derive a closure to the polymer reference interaction site model equation. The closure applies to a liquid of neutral polymers at melt densities. It can be considered a molecular generalization of the mean spherical approximation (MSA) closure of Lebowitz and Percus to the atomic Ornstein-Zernike (OZ) equation and is similar in some aspects to the reference \\\"molecular\\\" MSA (R-MMSA) closure of Schweizer and Yethiraj to PRISM. For a model binary blend of freely-jointed chains, the new closure predicts an unmixing critical temperature, Tc, via the susceptibility route that scales linearly with molecular weight, N, in agreement with Flory theory. Predictions for Tc of the new closure differ greatest from those of the R-MMSA at intermediate N, the latter being about 40% higher than the former there, but at large N, both theories give about the same values. For an isotopic blend of polyethylene, the new and R-MMSA closures predict a Tc about 25% higher than the experimental value, which is only moderately less accurate than the prediction of atomic OZ-MSA theory for Tc of methane. In this way, the derivation and its consequences help to identify the ingredients in a theory needed to properly model the equilibrium properties of a polymeric liquid at both short and long lengthscales.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226882\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226882","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非线性响应理论用于推导聚合物参照相互作用位点模型方程的闭合。该封闭适用于熔体密度下的中性聚合物液体。它可视为 Lebowitz 和 Percus 对原子 Ornstein-Zernike (OZ) 方程的平均球面近似 (MSA) 闭合的分子概括,在某些方面类似于 Schweizer 和 Yethiraj 对 PRISM 的参考 "分子 "MSA (R-MMSA) 闭合。对于自由接合链的二元混合模型,新的闭合预测了通过易感途径达到的解混合临界温度 Tc,该温度与分子量 N 成线性比例,与 Flory 理论一致。在中等 N 值时,新闭合理论对 Tc 的预测与 R-MMSA 的预测差异最大,后者比前者高出约 40%,但在大 N 值时,两种理论给出的数值基本相同。对于聚乙烯的同位素混合物,新闭合理论和 R-MMSA 闭合理论预测的 Tc 值比实验值高出约 25%,其准确性仅略低于原子 OZ-MSA 理论对甲烷 Tc 值的预测。通过这种方式,推导及其结果有助于确定理论所需的成分,以正确模拟聚合物液体在短尺度和长尺度上的平衡特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Closure to the PRISM equation derived from nonlinear response theory.

Nonlinear response theory is employed to derive a closure to the polymer reference interaction site model equation. The closure applies to a liquid of neutral polymers at melt densities. It can be considered a molecular generalization of the mean spherical approximation (MSA) closure of Lebowitz and Percus to the atomic Ornstein-Zernike (OZ) equation and is similar in some aspects to the reference "molecular" MSA (R-MMSA) closure of Schweizer and Yethiraj to PRISM. For a model binary blend of freely-jointed chains, the new closure predicts an unmixing critical temperature, Tc, via the susceptibility route that scales linearly with molecular weight, N, in agreement with Flory theory. Predictions for Tc of the new closure differ greatest from those of the R-MMSA at intermediate N, the latter being about 40% higher than the former there, but at large N, both theories give about the same values. For an isotopic blend of polyethylene, the new and R-MMSA closures predict a Tc about 25% higher than the experimental value, which is only moderately less accurate than the prediction of atomic OZ-MSA theory for Tc of methane. In this way, the derivation and its consequences help to identify the ingredients in a theory needed to properly model the equilibrium properties of a polymeric liquid at both short and long lengthscales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A finite-temperature study of the degeneracy of the crystal phases in systems of soft aspherical particles. Accurate nuclear quantum statistics on machine-learned classical effective potentials. Core-shell cobalt-iron@N-doped carbon: A high-performance cathode material for lithium-sulfur batteries. Determination of reduced density matrices in the doubly occupied configuration interaction space: A Hellmann-Feynman theorem approach. Domain growth kinetics in active binary mixtures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1