尖端曲率和边缘圆角对金纳米棒及其银涂层对应物的等离子特性的影响。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-09-28 DOI:10.1063/5.0228434
Charles Vernier, Hervé Portalès
{"title":"尖端曲率和边缘圆角对金纳米棒及其银涂层对应物的等离子特性的影响。","authors":"Charles Vernier, Hervé Portalès","doi":"10.1063/5.0228434","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal solutions of gold nanorods and silver-coated gold nanorods were prepared. The seeded growth synthesis protocols were improved by adding a flocculation purification step. The resulting populations of pure gold nanorods and Au@Ag core-shell cuboids were characterized by very low dispersion in size and shape. UV-vis-near-infrared absorption measurements were performed on several batches of well-calibrated nano-objects, supported by calculations based on the discrete dipole approximation, allowed to highlight the impact of various morphological features on the optical response. In addition to the well-known effect of the nanorod aspect ratio on the shift of the longitudinal surface plasmon resonance mode, special attention was paid to changing either the rounding of the nanorod end-caps or that of the edges of the coating silver shell. Nanorods and cuboids were modeled as superellipsoids. This approach enabled us to model precisely their complex shapes using just a few simple parameters and analyze the evolution of their extinction spectra as a function of the rounding of their tips and edges. Such nano-objects are widely used for various applications in fields such as biomedical, biosensing, or surface-enhanced Raman spectroscopy, thus making it crucial to precisely assess the impact of each morphological feature for optimizing their performance.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of tip curvature and edge rounding on the plasmonic properties of gold nanorods and their silver-coated counterparts.\",\"authors\":\"Charles Vernier, Hervé Portalès\",\"doi\":\"10.1063/5.0228434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colloidal solutions of gold nanorods and silver-coated gold nanorods were prepared. The seeded growth synthesis protocols were improved by adding a flocculation purification step. The resulting populations of pure gold nanorods and Au@Ag core-shell cuboids were characterized by very low dispersion in size and shape. UV-vis-near-infrared absorption measurements were performed on several batches of well-calibrated nano-objects, supported by calculations based on the discrete dipole approximation, allowed to highlight the impact of various morphological features on the optical response. In addition to the well-known effect of the nanorod aspect ratio on the shift of the longitudinal surface plasmon resonance mode, special attention was paid to changing either the rounding of the nanorod end-caps or that of the edges of the coating silver shell. Nanorods and cuboids were modeled as superellipsoids. This approach enabled us to model precisely their complex shapes using just a few simple parameters and analyze the evolution of their extinction spectra as a function of the rounding of their tips and edges. Such nano-objects are widely used for various applications in fields such as biomedical, biosensing, or surface-enhanced Raman spectroscopy, thus making it crucial to precisely assess the impact of each morphological feature for optimizing their performance.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228434\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0228434","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

制备了金纳米棒和银包金纳米棒的胶体溶液。通过添加絮凝纯化步骤,改进了种子生长合成方案。所制备的纯金纳米棒和 Au@Ag 核壳立方体在尺寸和形状上的分散性极低。在基于离散偶极近似的计算支持下,对几批校准良好的纳米物体进行了紫外-可见-近红外吸收测量,从而突出了各种形态特征对光学响应的影响。除了众所周知的纳米棒长宽比对纵向表面等离子体共振模式偏移的影响外,我们还特别注意改变纳米棒端盖或涂层银壳边缘的圆度。纳米棒和立方体被模拟成超椭球体。通过这种方法,我们只需使用几个简单的参数就能精确地模拟它们的复杂形状,并分析它们的消光光谱随其顶端和边缘的圆度变化而发生的变化。这种纳米物体广泛应用于生物医学、生物传感或表面增强拉曼光谱等领域,因此精确评估每个形态特征对优化其性能的影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of tip curvature and edge rounding on the plasmonic properties of gold nanorods and their silver-coated counterparts.

Colloidal solutions of gold nanorods and silver-coated gold nanorods were prepared. The seeded growth synthesis protocols were improved by adding a flocculation purification step. The resulting populations of pure gold nanorods and Au@Ag core-shell cuboids were characterized by very low dispersion in size and shape. UV-vis-near-infrared absorption measurements were performed on several batches of well-calibrated nano-objects, supported by calculations based on the discrete dipole approximation, allowed to highlight the impact of various morphological features on the optical response. In addition to the well-known effect of the nanorod aspect ratio on the shift of the longitudinal surface plasmon resonance mode, special attention was paid to changing either the rounding of the nanorod end-caps or that of the edges of the coating silver shell. Nanorods and cuboids were modeled as superellipsoids. This approach enabled us to model precisely their complex shapes using just a few simple parameters and analyze the evolution of their extinction spectra as a function of the rounding of their tips and edges. Such nano-objects are widely used for various applications in fields such as biomedical, biosensing, or surface-enhanced Raman spectroscopy, thus making it crucial to precisely assess the impact of each morphological feature for optimizing their performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A finite-temperature study of the degeneracy of the crystal phases in systems of soft aspherical particles. Accurate nuclear quantum statistics on machine-learned classical effective potentials. Core-shell cobalt-iron@N-doped carbon: A high-performance cathode material for lithium-sulfur batteries. Determination of reduced density matrices in the doubly occupied configuration interaction space: A Hellmann-Feynman theorem approach. Domain growth kinetics in active binary mixtures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1