界面局部场和表面响应系数

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-09-28 DOI:10.1063/5.0231281
Yuxuan Wei, Y R Shen
{"title":"界面局部场和表面响应系数","authors":"Yuxuan Wei, Y R Shen","doi":"10.1063/5.0231281","DOIUrl":null,"url":null,"abstract":"<p><p>The interfacial local field is of critical importance in data analysis to deduce intrinsic surface responses from optical measurements of interfaces of condensed media but has not yet been well interrogated. We present here a simple approach to find local fields approximately at various interfaces of isotropic or nearly isotropic media. We divide a medium into atomic planes or molecular layers. It is found that the dipolar field contribution to the local field in a plane or layer from induced dipoles residing in planes beyond the nearest neighbor planes or layers is negligible; in many cases, the contribution is dominated by in-plane dipoles and the local field has a simple expression very much like that for an isotropic bulk. This finding allows us to calculate approximate local field variation at various interfaces. With the interfacial local field known, intrinsic surface response coefficients can be extracted from the optically measured surface responses.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial local field and surface response coefficients.\",\"authors\":\"Yuxuan Wei, Y R Shen\",\"doi\":\"10.1063/5.0231281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interfacial local field is of critical importance in data analysis to deduce intrinsic surface responses from optical measurements of interfaces of condensed media but has not yet been well interrogated. We present here a simple approach to find local fields approximately at various interfaces of isotropic or nearly isotropic media. We divide a medium into atomic planes or molecular layers. It is found that the dipolar field contribution to the local field in a plane or layer from induced dipoles residing in planes beyond the nearest neighbor planes or layers is negligible; in many cases, the contribution is dominated by in-plane dipoles and the local field has a simple expression very much like that for an isotropic bulk. This finding allows us to calculate approximate local field variation at various interfaces. With the interfacial local field known, intrinsic surface response coefficients can be extracted from the optically measured surface responses.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231281\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0231281","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

界面局部场对于从凝聚态介质界面光学测量数据中推断内在表面响应的数据分析至关重要,但目前尚未得到很好的研究。我们在此介绍一种简单的方法,可以近似找到各向同性或近似各向同性介质各种界面的局部场。我们将介质划分为原子平面或分子层。我们发现,驻留在近邻平面或分子层以外平面的诱导偶极子对平面或分子层局部场的贡献可以忽略不计;在许多情况下,贡献主要来自平面内偶极子,局部场的简单表达式与各向同性体的表达式非常相似。有了这一发现,我们就可以计算出各种界面的近似局部场变化。有了已知的界面局部场,就可以从光学测量的表面响应中提取出固有的表面响应系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial local field and surface response coefficients.

The interfacial local field is of critical importance in data analysis to deduce intrinsic surface responses from optical measurements of interfaces of condensed media but has not yet been well interrogated. We present here a simple approach to find local fields approximately at various interfaces of isotropic or nearly isotropic media. We divide a medium into atomic planes or molecular layers. It is found that the dipolar field contribution to the local field in a plane or layer from induced dipoles residing in planes beyond the nearest neighbor planes or layers is negligible; in many cases, the contribution is dominated by in-plane dipoles and the local field has a simple expression very much like that for an isotropic bulk. This finding allows us to calculate approximate local field variation at various interfaces. With the interfacial local field known, intrinsic surface response coefficients can be extracted from the optically measured surface responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A finite-temperature study of the degeneracy of the crystal phases in systems of soft aspherical particles. Accurate nuclear quantum statistics on machine-learned classical effective potentials. Core-shell cobalt-iron@N-doped carbon: A high-performance cathode material for lithium-sulfur batteries. Determination of reduced density matrices in the doubly occupied configuration interaction space: A Hellmann-Feynman theorem approach. Domain growth kinetics in active binary mixtures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1