关于 2,4-二氟苯甲醚 S1 态振动弛豫和超快电子动力学的研究。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-09-28 DOI:10.1063/5.0231264
Ling Cao, Yanmei Wang, Xin Lu, Song Zhang
{"title":"关于 2,4-二氟苯甲醚 S1 态振动弛豫和超快电子动力学的研究。","authors":"Ling Cao, Yanmei Wang, Xin Lu, Song Zhang","doi":"10.1063/5.0231264","DOIUrl":null,"url":null,"abstract":"<p><p>Intramolecular vibrational energy redistribution (IVR) has a profound impact on dynamic processes. We have studied two types of IVR processes, restricted and dissipative, and ultrafast dynamics of the S1 state of 2,4-difluoroanisole using time-resolved photoelectron spectroscopy and time-of-flight mass spectroscopy. The restricted IVR occurs in the intermediate regime of 219 cm-1 vibrational level, and the dissipative IVR occurs in the statistical regime of 1200 cm-1. The lifetimes of IVR processes are measured to be 90 and 11 ps, respectively, depending on the internal energies of the S1 state and differ by a factor of eight. Similar subsequent dynamics were observed at two vibrational levels in the S1 state. The population undergoes IVR following the initial excitation and subsequently leaks into a triplet state, accompanied by intersystem crossing within ∼400 ps followed by a slower nonradiative relaxation of the triplet state on the nanosecond time scale. Furthermore, the values of 3s and 3px Rydberg states of 2,4-difluoroanisole were experimentally determined to be 5.02 and 6.28 eV.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the vibrational relaxation and ultrafast electronic dynamics of S1 state in 2,4-difluoroanisole.\",\"authors\":\"Ling Cao, Yanmei Wang, Xin Lu, Song Zhang\",\"doi\":\"10.1063/5.0231264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intramolecular vibrational energy redistribution (IVR) has a profound impact on dynamic processes. We have studied two types of IVR processes, restricted and dissipative, and ultrafast dynamics of the S1 state of 2,4-difluoroanisole using time-resolved photoelectron spectroscopy and time-of-flight mass spectroscopy. The restricted IVR occurs in the intermediate regime of 219 cm-1 vibrational level, and the dissipative IVR occurs in the statistical regime of 1200 cm-1. The lifetimes of IVR processes are measured to be 90 and 11 ps, respectively, depending on the internal energies of the S1 state and differ by a factor of eight. Similar subsequent dynamics were observed at two vibrational levels in the S1 state. The population undergoes IVR following the initial excitation and subsequently leaks into a triplet state, accompanied by intersystem crossing within ∼400 ps followed by a slower nonradiative relaxation of the triplet state on the nanosecond time scale. Furthermore, the values of 3s and 3px Rydberg states of 2,4-difluoroanisole were experimentally determined to be 5.02 and 6.28 eV.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231264\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0231264","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

分子内振动能量再分配(IVR)对动态过程有着深远的影响。我们利用时间分辨光电子能谱和飞行时间质谱研究了 2,4-二氟苯甲醚 S1 态的两种 IVR 过程(受限 IVR 和耗散 IVR)和超快动力学。受限IVR发生在219 cm-1振动级的中间机制,耗散IVR发生在1200 cm-1的统计机制。根据 S1 状态的内部能量,测得 IVR 过程的寿命分别为 90 和 11 ps,相差 8 倍。在 S1 态的两个振动水平上也观察到了类似的后续动力学。种群在初始激发后发生 IVR,随后泄漏到三重态,在 ∼400 ps 内发生系统间交叉,随后三重态在纳秒时间尺度上发生较慢的非辐射弛豫。此外,实验还确定了 2,4-二氟苯甲醚的 3s 和 3px Rydberg 状态值分别为 5.02 和 6.28 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the vibrational relaxation and ultrafast electronic dynamics of S1 state in 2,4-difluoroanisole.

Intramolecular vibrational energy redistribution (IVR) has a profound impact on dynamic processes. We have studied two types of IVR processes, restricted and dissipative, and ultrafast dynamics of the S1 state of 2,4-difluoroanisole using time-resolved photoelectron spectroscopy and time-of-flight mass spectroscopy. The restricted IVR occurs in the intermediate regime of 219 cm-1 vibrational level, and the dissipative IVR occurs in the statistical regime of 1200 cm-1. The lifetimes of IVR processes are measured to be 90 and 11 ps, respectively, depending on the internal energies of the S1 state and differ by a factor of eight. Similar subsequent dynamics were observed at two vibrational levels in the S1 state. The population undergoes IVR following the initial excitation and subsequently leaks into a triplet state, accompanied by intersystem crossing within ∼400 ps followed by a slower nonradiative relaxation of the triplet state on the nanosecond time scale. Furthermore, the values of 3s and 3px Rydberg states of 2,4-difluoroanisole were experimentally determined to be 5.02 and 6.28 eV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A finite-temperature study of the degeneracy of the crystal phases in systems of soft aspherical particles. Accurate nuclear quantum statistics on machine-learned classical effective potentials. Core-shell cobalt-iron@N-doped carbon: A high-performance cathode material for lithium-sulfur batteries. Determination of reduced density matrices in the doubly occupied configuration interaction space: A Hellmann-Feynman theorem approach. Domain growth kinetics in active binary mixtures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1