不同农业环境中的磷易变性与遗留来源。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-29 DOI:10.1002/jeq2.20632
Zachary P Simpson, Joshua Mott, Kyle Elkin, Anthony Buda, Joshua Faulkner, Cathleen Hapeman, Greg McCarty, Maryam Foroughi, W Dean Hively, Kevin King, Will Osterholz, Chad Penn, Mark Williams, Lindsey Witthaus, Martin Locke, Ethan Pawlowski, Brent Dalzell, Gary Feyereisen, Christine Dolph, David Bjorneberg, Kossi Nouwakpo, Christopher W Rogers, Isis Scott, Carl H Bolster, Lisa Duriancik, Peter J A Kleinman
{"title":"不同农业环境中的磷易变性与遗留来源。","authors":"Zachary P Simpson, Joshua Mott, Kyle Elkin, Anthony Buda, Joshua Faulkner, Cathleen Hapeman, Greg McCarty, Maryam Foroughi, W Dean Hively, Kevin King, Will Osterholz, Chad Penn, Mark Williams, Lindsey Witthaus, Martin Locke, Ethan Pawlowski, Brent Dalzell, Gary Feyereisen, Christine Dolph, David Bjorneberg, Kossi Nouwakpo, Christopher W Rogers, Isis Scott, Carl H Bolster, Lisa Duriancik, Peter J A Kleinman","doi":"10.1002/jeq2.20632","DOIUrl":null,"url":null,"abstract":"<p><p>The buffering of phosphorus (P) in the landscape delays management outcomes for water quality. If stored in labile form (readily exchangeable and bioavailable), P may readily pollute waters. We studied labile P and its intensity for >600 soils and sediments across seven study locations in the United States. Stocks of labile P were large enough to sustain high P losses for decades, indicating the transport-limited regime typical of legacy P. Sediments were commonly more P-sorptive than nearby soils. Soils in the top 5 cm had 1.3-3.0 times more labile P than soils at 5-15 cm. Stratification in soil test P and total P was, however, less consistent. As P exchange via sorption processes follows the difference in intensities between soil/sediment surface and solution, we built a model for the equilibrium phosphate concentration at net zero sorption (EPC<sub>0</sub>) as a function of labile P (quantity) and buffer capacity. Despite widely varying properties across sites, the model generalized well for all soils and sediments: EPC<sub>0</sub> increased sharply with more labile P and to greater degree when buffer capacity was low or sorption sites were likely more saturated. This quantity-intensity-capacity relationship is central to the P transport models we rely on today. Our data inform the improvement of such P models, which will be necessary to predict the impacts of legacy P. Further, this work reaffirms the position of labile P as a key focus for environmental P management-a view Dr. Sharpley developed in the 1980s with fewer data and resources.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus lability across diverse agricultural contexts with legacy sources.\",\"authors\":\"Zachary P Simpson, Joshua Mott, Kyle Elkin, Anthony Buda, Joshua Faulkner, Cathleen Hapeman, Greg McCarty, Maryam Foroughi, W Dean Hively, Kevin King, Will Osterholz, Chad Penn, Mark Williams, Lindsey Witthaus, Martin Locke, Ethan Pawlowski, Brent Dalzell, Gary Feyereisen, Christine Dolph, David Bjorneberg, Kossi Nouwakpo, Christopher W Rogers, Isis Scott, Carl H Bolster, Lisa Duriancik, Peter J A Kleinman\",\"doi\":\"10.1002/jeq2.20632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The buffering of phosphorus (P) in the landscape delays management outcomes for water quality. If stored in labile form (readily exchangeable and bioavailable), P may readily pollute waters. We studied labile P and its intensity for >600 soils and sediments across seven study locations in the United States. Stocks of labile P were large enough to sustain high P losses for decades, indicating the transport-limited regime typical of legacy P. Sediments were commonly more P-sorptive than nearby soils. Soils in the top 5 cm had 1.3-3.0 times more labile P than soils at 5-15 cm. Stratification in soil test P and total P was, however, less consistent. As P exchange via sorption processes follows the difference in intensities between soil/sediment surface and solution, we built a model for the equilibrium phosphate concentration at net zero sorption (EPC<sub>0</sub>) as a function of labile P (quantity) and buffer capacity. Despite widely varying properties across sites, the model generalized well for all soils and sediments: EPC<sub>0</sub> increased sharply with more labile P and to greater degree when buffer capacity was low or sorption sites were likely more saturated. This quantity-intensity-capacity relationship is central to the P transport models we rely on today. Our data inform the improvement of such P models, which will be necessary to predict the impacts of legacy P. Further, this work reaffirms the position of labile P as a key focus for environmental P management-a view Dr. Sharpley developed in the 1980s with fewer data and resources.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/jeq2.20632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.20632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

景观中磷(P)的缓冲作用会延迟水质的管理结果。如果磷以可迁移形式(易于交换和生物利用)储存,就很容易污染水体。我们研究了美国 7 个研究地点超过 600 种土壤和沉积物中的可移动磷及其浓度。可溶性磷的储量大到足以维持数十年的高磷损失,这表明遗留磷具有典型的迁移限制机制。顶部 5 厘米土壤中的可利用钾是 5-15 厘米土壤的 1.3-3.0 倍。然而,土壤测试 P 和总 P 的分层情况却不太一致。由于土壤/沉积物表面与溶液之间的磷交换是通过吸附过程进行的,因此我们建立了一个模型,将净零吸附时的磷平衡浓度(EPC0)作为可溶性磷(数量)和缓冲能力的函数。尽管不同地点的特性差异很大,但该模型对所有土壤和沉积物都有很好的通用性:EPC0 随可变 P 的增加而急剧增加,当缓冲能力较低或吸附点饱和度较高时,EPC0 的增加程度更大。这种数量-强度-容量的关系是我们今天所依赖的磷迁移模型的核心。我们的数据为改进此类 P 模型提供了信息,这对于预测遗留 P 的影响是必要的。此外,这项工作再次确认了可溶性 P 作为环境 P 管理重点的地位--这是 Sharpley 博士在 20 世纪 80 年代数据和资源较少的情况下提出的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphorus lability across diverse agricultural contexts with legacy sources.

The buffering of phosphorus (P) in the landscape delays management outcomes for water quality. If stored in labile form (readily exchangeable and bioavailable), P may readily pollute waters. We studied labile P and its intensity for >600 soils and sediments across seven study locations in the United States. Stocks of labile P were large enough to sustain high P losses for decades, indicating the transport-limited regime typical of legacy P. Sediments were commonly more P-sorptive than nearby soils. Soils in the top 5 cm had 1.3-3.0 times more labile P than soils at 5-15 cm. Stratification in soil test P and total P was, however, less consistent. As P exchange via sorption processes follows the difference in intensities between soil/sediment surface and solution, we built a model for the equilibrium phosphate concentration at net zero sorption (EPC0) as a function of labile P (quantity) and buffer capacity. Despite widely varying properties across sites, the model generalized well for all soils and sediments: EPC0 increased sharply with more labile P and to greater degree when buffer capacity was low or sorption sites were likely more saturated. This quantity-intensity-capacity relationship is central to the P transport models we rely on today. Our data inform the improvement of such P models, which will be necessary to predict the impacts of legacy P. Further, this work reaffirms the position of labile P as a key focus for environmental P management-a view Dr. Sharpley developed in the 1980s with fewer data and resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1