用于生物医学应用的新型镁锌镓非晶合金的机械和腐蚀特性研究

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-09-20 DOI:10.3390/jfb15090275
Viacheslav E Bazhenov, Mikhail V Gorobinskiy, Andrey I Bazlov, Vasiliy A Bautin, Andrey V Koltygin, Alexander A Komissarov, Denis V Ten, Anna V Li, Alexey Yu Drobyshev, Yoongu Kang, In-Ho Jung, Kwang Seon Shin
{"title":"用于生物医学应用的新型镁锌镓非晶合金的机械和腐蚀特性研究","authors":"Viacheslav E Bazhenov, Mikhail V Gorobinskiy, Andrey I Bazlov, Vasiliy A Bautin, Andrey V Koltygin, Alexander A Komissarov, Denis V Ten, Anna V Li, Alexey Yu Drobyshev, Yoongu Kang, In-Ho Jung, Kwang Seon Shin","doi":"10.3390/jfb15090275","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance. The Mg-Zn-Ga metallic glass system was investigated in this study, which shows potential for improving the corrosion resistance of magnesium alloys for biodegradable implants. According to clinical tests, it has been demonstrated that Ga ions are effective in the regeneration of bone tissue. The microstructure, phase composition, and phase transition temperatures of sixteen Mg-Zn-Ga alloys were analyzed. In addition, a liquidus projection of the Mg-Zn-Ga system was constructed and validated through the thermodynamic calculations based on the CALPHAD-type database. Furthermore, amorphous ribbons were prepared by rapid solidification of the melt for prospective alloys. XRD and DSC analysis indicate that the alloys with the most potential possess an amorphous structure. The ribbons exhibit an ultimate tensile strength of up to 524 MPa and a low corrosion rate of 0.1-0.3 mm/year in Hanks' solution. Therefore, it appears that Mg-Zn-Ga metallic glass alloys could be suitable for biodegradable applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433529/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigation of Mechanical and Corrosion Properties of New Mg-Zn-Ga Amorphous Alloys for Biomedical Applications.\",\"authors\":\"Viacheslav E Bazhenov, Mikhail V Gorobinskiy, Andrey I Bazlov, Vasiliy A Bautin, Andrey V Koltygin, Alexander A Komissarov, Denis V Ten, Anna V Li, Alexey Yu Drobyshev, Yoongu Kang, In-Ho Jung, Kwang Seon Shin\",\"doi\":\"10.3390/jfb15090275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance. The Mg-Zn-Ga metallic glass system was investigated in this study, which shows potential for improving the corrosion resistance of magnesium alloys for biodegradable implants. According to clinical tests, it has been demonstrated that Ga ions are effective in the regeneration of bone tissue. The microstructure, phase composition, and phase transition temperatures of sixteen Mg-Zn-Ga alloys were analyzed. In addition, a liquidus projection of the Mg-Zn-Ga system was constructed and validated through the thermodynamic calculations based on the CALPHAD-type database. Furthermore, amorphous ribbons were prepared by rapid solidification of the melt for prospective alloys. XRD and DSC analysis indicate that the alloys with the most potential possess an amorphous structure. The ribbons exhibit an ultimate tensile strength of up to 524 MPa and a low corrosion rate of 0.1-0.3 mm/year in Hanks' solution. Therefore, it appears that Mg-Zn-Ga metallic glass alloys could be suitable for biodegradable applications.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15090275\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15090275","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

镁合金因其生物相容性和与人体骨骼相似的特性,被认为是有希望用作生物可降解植入体的材料。然而,镁合金在体液中的高腐蚀率限制了其使用。为了解决这个问题,可以利用非晶化来抑制微电化学腐蚀并提高耐腐蚀性。本研究对 Mg-Zn-Ga 金属玻璃系统进行了研究,结果表明该系统具有提高可生物降解植入体镁合金耐腐蚀性的潜力。临床试验证明,镓离子能有效促进骨组织再生。本文分析了 16 种 Mg-Zn-Ga 合金的微观结构、相组成和相变温度。此外,通过基于 CALPHAD 型数据库的热力学计算,构建并验证了 Mg-Zn-Ga 系统的液相投影。此外,还通过熔体的快速凝固制备了未来合金的无定形带。XRD 和 DSC 分析表明,最具潜力的合金具有非晶态结构。这些带材的极限拉伸强度高达 524 兆帕,在汉克斯溶液中的腐蚀速率低至 0.1-0.3 毫米/年。因此,Mg-Zn-Ga 金属玻璃合金似乎适合生物降解应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Mechanical and Corrosion Properties of New Mg-Zn-Ga Amorphous Alloys for Biomedical Applications.

Magnesium alloys are considered as promising materials for use as biodegradable implants due to their biocompatibility and similarity to human bone properties. However, their high corrosion rate in bodily fluids limits their use. To address this issue, amorphization can be used to inhibit microgalvanic corrosion and increase corrosion resistance. The Mg-Zn-Ga metallic glass system was investigated in this study, which shows potential for improving the corrosion resistance of magnesium alloys for biodegradable implants. According to clinical tests, it has been demonstrated that Ga ions are effective in the regeneration of bone tissue. The microstructure, phase composition, and phase transition temperatures of sixteen Mg-Zn-Ga alloys were analyzed. In addition, a liquidus projection of the Mg-Zn-Ga system was constructed and validated through the thermodynamic calculations based on the CALPHAD-type database. Furthermore, amorphous ribbons were prepared by rapid solidification of the melt for prospective alloys. XRD and DSC analysis indicate that the alloys with the most potential possess an amorphous structure. The ribbons exhibit an ultimate tensile strength of up to 524 MPa and a low corrosion rate of 0.1-0.3 mm/year in Hanks' solution. Therefore, it appears that Mg-Zn-Ga metallic glass alloys could be suitable for biodegradable applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1