{"title":"可吸收手术缝合线机械性能的短期水解降解:比较研究","authors":"Jakub Szabelski, Robert Karpiński","doi":"10.3390/jfb15090273","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical sutures play a crucial role in wound closure, facilitating the tissue-healing process across various fields of medicine. The objective of this study was to analyse the impact of seasoning time during the initial days/weeks of seasoning in Ringer's solution on the mechanical properties of five commercial absorbable sutures: SafilQuick+<sup>®</sup>, Novosyn<sup>®</sup>, MonosynQuick<sup>®</sup>, Monosyn<sup>®</sup> and Monoplus<sup>®</sup>, each with different absorption periods. The results demonstrated that the SafilQuick+ and MonosynQuick sutures lost strength within 9-12 days, as evidenced by statistically significant changes in tensile strength. In contrast, the Novosyn and Monoplus sutures did not exhibit significant changes in strength during the study period. Statistical analysis confirmed significant differences in the behaviour of the individual sutures, highlighting the importance of selecting appropriate suture material in the context of the specific medical procedure.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Short-Term Hydrolytic Degradation of Mechanical Properties of Absorbable Surgical Sutures: A Comparative Study.\",\"authors\":\"Jakub Szabelski, Robert Karpiński\",\"doi\":\"10.3390/jfb15090273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgical sutures play a crucial role in wound closure, facilitating the tissue-healing process across various fields of medicine. The objective of this study was to analyse the impact of seasoning time during the initial days/weeks of seasoning in Ringer's solution on the mechanical properties of five commercial absorbable sutures: SafilQuick+<sup>®</sup>, Novosyn<sup>®</sup>, MonosynQuick<sup>®</sup>, Monosyn<sup>®</sup> and Monoplus<sup>®</sup>, each with different absorption periods. The results demonstrated that the SafilQuick+ and MonosynQuick sutures lost strength within 9-12 days, as evidenced by statistically significant changes in tensile strength. In contrast, the Novosyn and Monoplus sutures did not exhibit significant changes in strength during the study period. Statistical analysis confirmed significant differences in the behaviour of the individual sutures, highlighting the importance of selecting appropriate suture material in the context of the specific medical procedure.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15090273\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15090273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Short-Term Hydrolytic Degradation of Mechanical Properties of Absorbable Surgical Sutures: A Comparative Study.
Surgical sutures play a crucial role in wound closure, facilitating the tissue-healing process across various fields of medicine. The objective of this study was to analyse the impact of seasoning time during the initial days/weeks of seasoning in Ringer's solution on the mechanical properties of five commercial absorbable sutures: SafilQuick+®, Novosyn®, MonosynQuick®, Monosyn® and Monoplus®, each with different absorption periods. The results demonstrated that the SafilQuick+ and MonosynQuick sutures lost strength within 9-12 days, as evidenced by statistically significant changes in tensile strength. In contrast, the Novosyn and Monoplus sutures did not exhibit significant changes in strength during the study period. Statistical analysis confirmed significant differences in the behaviour of the individual sutures, highlighting the importance of selecting appropriate suture material in the context of the specific medical procedure.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.