{"title":"利用基态和激发态密度泛函理论破解氮化镓中的 3d 掺杂缺陷。","authors":"Peter A Schultz, Jesse J Lutz","doi":"10.1088/1361-648X/ad7fb1","DOIUrl":null,"url":null,"abstract":"<p><p>Using ground state density functional theory (DFT) and implementing an occupation-constrained DFT (occ-DFT) for self-consistent excited state calculations, we decipher the electronic structure of the Mn dopant and other 3<i>d</i>defects in GaN across the band gap. Our analysis, validated with broad agreement with defect levels (ground-state calculations) and photoluminescence data (excited-state calculations), mandates reinterpretation and reassignment of 3<i>d</i>defect data in GaN. The Mn<sub>Ga</sub>defect is determined to span stable charge states from (1-) in<i>n</i>-type GaN through (2+) in<i>p</i>-type GaN. The Mn(2+) is predicted to be a<i>d</i><sup>2</sup>ground state spin triplet defect with a singlet excited state, isoelectronic with the defect associated with the 1.19 eV photoluminescence in<i>n</i>-type GaN. The combined analysis of defect levels and excited states invites reassessment of all<i>d</i><sup>2</sup>-capable dopants in GaN. We demonstrate that the 1.19 eV defect, a candidate defect for optically controlled quantum applications, cannot be the Cr(1+) assumed in literature and instead must be the V(0). The combined ground-state/excited-state DFT analysis is shown to be able to chemically fingerprint defects.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using ground state and excited state density functional theory to decipher 3<i>d</i>dopant defects in GaN.\",\"authors\":\"Peter A Schultz, Jesse J Lutz\",\"doi\":\"10.1088/1361-648X/ad7fb1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using ground state density functional theory (DFT) and implementing an occupation-constrained DFT (occ-DFT) for self-consistent excited state calculations, we decipher the electronic structure of the Mn dopant and other 3<i>d</i>defects in GaN across the band gap. Our analysis, validated with broad agreement with defect levels (ground-state calculations) and photoluminescence data (excited-state calculations), mandates reinterpretation and reassignment of 3<i>d</i>defect data in GaN. The Mn<sub>Ga</sub>defect is determined to span stable charge states from (1-) in<i>n</i>-type GaN through (2+) in<i>p</i>-type GaN. The Mn(2+) is predicted to be a<i>d</i><sup>2</sup>ground state spin triplet defect with a singlet excited state, isoelectronic with the defect associated with the 1.19 eV photoluminescence in<i>n</i>-type GaN. The combined analysis of defect levels and excited states invites reassessment of all<i>d</i><sup>2</sup>-capable dopants in GaN. We demonstrate that the 1.19 eV defect, a candidate defect for optically controlled quantum applications, cannot be the Cr(1+) assumed in literature and instead must be the V(0). The combined ground-state/excited-state DFT analysis is shown to be able to chemically fingerprint defects.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7fb1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7fb1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
我们利用基态密度泛函理论(DFT)并采用占位约束 DFT(occ-DFT)进行自洽激发态计算,破译了氮化镓中掺杂锰和其他 3d 缺陷在整个带隙中的电子结构。我们的分析与缺陷水平(基态计算)和光致发光数据(激发态计算)的广泛一致得到了验证,因此必须对氮化镓中的 3d 缺陷数据进行广泛的重新解释。锰镓缺陷跨越了从 n 型氮化镓中的(1-)到 p 型氮化镓中的(2+)的稳定电荷态。据预测,Mn(2+) 是一种具有单电子激发态的 d2 基态自旋三重态缺陷,与 n 型氮化镓中 1.19 eV 光致发光相关的缺陷是等电子的。通过对缺陷水平和激发态的综合分析,我们需要重新评估氮化镓中所有可产生 d2 的掺杂剂。我们证明了作为光控量子应用候选缺陷的 1.19 eV 缺陷不可能是文献中假设的 Cr(1+),而必须是 V(0)。结合基态/激发态的 DFT 分析表明能够对缺陷进行化学指纹识别。
Using ground state and excited state density functional theory to decipher 3ddopant defects in GaN.
Using ground state density functional theory (DFT) and implementing an occupation-constrained DFT (occ-DFT) for self-consistent excited state calculations, we decipher the electronic structure of the Mn dopant and other 3ddefects in GaN across the band gap. Our analysis, validated with broad agreement with defect levels (ground-state calculations) and photoluminescence data (excited-state calculations), mandates reinterpretation and reassignment of 3ddefect data in GaN. The MnGadefect is determined to span stable charge states from (1-) inn-type GaN through (2+) inp-type GaN. The Mn(2+) is predicted to be ad2ground state spin triplet defect with a singlet excited state, isoelectronic with the defect associated with the 1.19 eV photoluminescence inn-type GaN. The combined analysis of defect levels and excited states invites reassessment of alld2-capable dopants in GaN. We demonstrate that the 1.19 eV defect, a candidate defect for optically controlled quantum applications, cannot be the Cr(1+) assumed in literature and instead must be the V(0). The combined ground-state/excited-state DFT analysis is shown to be able to chemically fingerprint defects.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.