具有稳定接口的铂薄膜电阻温度探测器,有望集成到碳化硅高温压力传感器中。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-09-26 DOI:10.1038/s41378-024-00746-w
Ziyan Fang, Xiaoyu Wu, Hu Zhao, Xudong Fang, Chen Wu, Dong Zhang, Zhongkai Zhang, Bian Tian, Libo Zhao, Tiefu Li, Prateek Verma, Ryutaro Maeda, Zhuangde Jiang
{"title":"具有稳定接口的铂薄膜电阻温度探测器,有望集成到碳化硅高温压力传感器中。","authors":"Ziyan Fang, Xiaoyu Wu, Hu Zhao, Xudong Fang, Chen Wu, Dong Zhang, Zhongkai Zhang, Bian Tian, Libo Zhao, Tiefu Li, Prateek Verma, Ryutaro Maeda, Zhuangde Jiang","doi":"10.1038/s41378-024-00746-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the excellent mechanical, chemical, and electrical properties of third-generation semiconductor silicon carbide (SiC), pressure sensors utilizing this material might be able to operate in extreme environments with temperatures exceeding 300 °C. However, the significant output drift at elevated temperatures challenges the precision and stability of measurements. Real-time in situ temperature monitoring of the pressure sensor chip is highly important for the accurate compensation of the pressure sensor. In this study, we fabricate platinum (Pt) thin-film resistance temperature detectors (RTDs) on a SiC substrate by incorporating aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) as the transition layer and utilizing aluminum nitride (AlN) grooves for alignment through microfabrication techniques. The composite layers strongly adhere to the substrate at temperatures reaching 950 °C, and the interface of the Al<sub>2</sub>O<sub>3</sub>/Pt bilayer remains stable at elevated temperatures of approximately 950 °C. This stability contributes to the excellent high-temperature electrical performance of the Pt RTD, enabling it to endure temperatures exceeding 850 °C with good linearity. These characteristics establish a basis for the future integration of Pt RTD in SiC pressure sensors. Furthermore, tests and analyses are conducted on the interfacial diffusion, surface morphological, microstructural, and electrical properties of the Pt films at various annealing temperatures. It can be inferred that the tensile stress and self-diffusion of Pt films lead to the formation of hillocks, ultimately reducing the electrical performance of the Pt thin-film RTD. To increase the upper temperature threshold, steps should be taken to prevent the agglomeration of Pt films.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"133"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pt thin-film resistance thermo detectors with stable interfaces for potential integration in SiC high-temperature pressure sensors.\",\"authors\":\"Ziyan Fang, Xiaoyu Wu, Hu Zhao, Xudong Fang, Chen Wu, Dong Zhang, Zhongkai Zhang, Bian Tian, Libo Zhao, Tiefu Li, Prateek Verma, Ryutaro Maeda, Zhuangde Jiang\",\"doi\":\"10.1038/s41378-024-00746-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the excellent mechanical, chemical, and electrical properties of third-generation semiconductor silicon carbide (SiC), pressure sensors utilizing this material might be able to operate in extreme environments with temperatures exceeding 300 °C. However, the significant output drift at elevated temperatures challenges the precision and stability of measurements. Real-time in situ temperature monitoring of the pressure sensor chip is highly important for the accurate compensation of the pressure sensor. In this study, we fabricate platinum (Pt) thin-film resistance temperature detectors (RTDs) on a SiC substrate by incorporating aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) as the transition layer and utilizing aluminum nitride (AlN) grooves for alignment through microfabrication techniques. The composite layers strongly adhere to the substrate at temperatures reaching 950 °C, and the interface of the Al<sub>2</sub>O<sub>3</sub>/Pt bilayer remains stable at elevated temperatures of approximately 950 °C. This stability contributes to the excellent high-temperature electrical performance of the Pt RTD, enabling it to endure temperatures exceeding 850 °C with good linearity. These characteristics establish a basis for the future integration of Pt RTD in SiC pressure sensors. Furthermore, tests and analyses are conducted on the interfacial diffusion, surface morphological, microstructural, and electrical properties of the Pt films at various annealing temperatures. It can be inferred that the tensile stress and self-diffusion of Pt films lead to the formation of hillocks, ultimately reducing the electrical performance of the Pt thin-film RTD. To increase the upper temperature threshold, steps should be taken to prevent the agglomeration of Pt films.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"133\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00746-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00746-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于第三代半导体碳化硅(SiC)具有出色的机械、化学和电气特性,使用这种材料的压力传感器可以在温度超过 300 °C 的极端环境下工作。然而,高温下的输出漂移对测量的精度和稳定性提出了挑战。对压力传感器芯片进行实时原位温度监测对压力传感器的精确补偿非常重要。在本研究中,我们在碳化硅基底上制作了铂 (Pt) 薄膜电阻温度探测器 (RTD),将氧化铝 (Al2O3) 作为过渡层,并通过微加工技术利用氮化铝 (AlN) 沟槽进行对准。复合层在高达 950 ℃ 的温度下与基底紧密粘合,Al2O3/Pt 双层的界面在约 950 ℃ 的高温下保持稳定。这种稳定性造就了铂热电阻出色的高温电气性能,使其能够在超过 850 °C 的温度下保持良好的线性。这些特性为将来在碳化硅压力传感器中集成铂热电阻奠定了基础。此外,还对不同退火温度下铂薄膜的界面扩散、表面形貌、微观结构和电气性能进行了测试和分析。由此可以推断,铂薄膜的拉伸应力和自扩散会导致小丘的形成,最终降低铂薄膜热电阻的电气性能。为了提高温度阈值上限,应采取措施防止铂薄膜团聚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pt thin-film resistance thermo detectors with stable interfaces for potential integration in SiC high-temperature pressure sensors.

Due to the excellent mechanical, chemical, and electrical properties of third-generation semiconductor silicon carbide (SiC), pressure sensors utilizing this material might be able to operate in extreme environments with temperatures exceeding 300 °C. However, the significant output drift at elevated temperatures challenges the precision and stability of measurements. Real-time in situ temperature monitoring of the pressure sensor chip is highly important for the accurate compensation of the pressure sensor. In this study, we fabricate platinum (Pt) thin-film resistance temperature detectors (RTDs) on a SiC substrate by incorporating aluminum oxide (Al2O3) as the transition layer and utilizing aluminum nitride (AlN) grooves for alignment through microfabrication techniques. The composite layers strongly adhere to the substrate at temperatures reaching 950 °C, and the interface of the Al2O3/Pt bilayer remains stable at elevated temperatures of approximately 950 °C. This stability contributes to the excellent high-temperature electrical performance of the Pt RTD, enabling it to endure temperatures exceeding 850 °C with good linearity. These characteristics establish a basis for the future integration of Pt RTD in SiC pressure sensors. Furthermore, tests and analyses are conducted on the interfacial diffusion, surface morphological, microstructural, and electrical properties of the Pt films at various annealing temperatures. It can be inferred that the tensile stress and self-diffusion of Pt films lead to the formation of hillocks, ultimately reducing the electrical performance of the Pt thin-film RTD. To increase the upper temperature threshold, steps should be taken to prevent the agglomeration of Pt films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. Sound innovations for biofabrication and tissue engineering. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial. Defect-insensitive cylindrical surface lattice resonance array and its batch replication for enhanced immunoassay. Biomimetic hair-assisted GaN optical devices for bidirectional airflow detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1