{"title":"具有稳定接口的铂薄膜电阻温度探测器,有望集成到碳化硅高温压力传感器中。","authors":"Ziyan Fang, Xiaoyu Wu, Hu Zhao, Xudong Fang, Chen Wu, Dong Zhang, Zhongkai Zhang, Bian Tian, Libo Zhao, Tiefu Li, Prateek Verma, Ryutaro Maeda, Zhuangde Jiang","doi":"10.1038/s41378-024-00746-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the excellent mechanical, chemical, and electrical properties of third-generation semiconductor silicon carbide (SiC), pressure sensors utilizing this material might be able to operate in extreme environments with temperatures exceeding 300 °C. However, the significant output drift at elevated temperatures challenges the precision and stability of measurements. Real-time in situ temperature monitoring of the pressure sensor chip is highly important for the accurate compensation of the pressure sensor. In this study, we fabricate platinum (Pt) thin-film resistance temperature detectors (RTDs) on a SiC substrate by incorporating aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) as the transition layer and utilizing aluminum nitride (AlN) grooves for alignment through microfabrication techniques. The composite layers strongly adhere to the substrate at temperatures reaching 950 °C, and the interface of the Al<sub>2</sub>O<sub>3</sub>/Pt bilayer remains stable at elevated temperatures of approximately 950 °C. This stability contributes to the excellent high-temperature electrical performance of the Pt RTD, enabling it to endure temperatures exceeding 850 °C with good linearity. These characteristics establish a basis for the future integration of Pt RTD in SiC pressure sensors. Furthermore, tests and analyses are conducted on the interfacial diffusion, surface morphological, microstructural, and electrical properties of the Pt films at various annealing temperatures. It can be inferred that the tensile stress and self-diffusion of Pt films lead to the formation of hillocks, ultimately reducing the electrical performance of the Pt thin-film RTD. To increase the upper temperature threshold, steps should be taken to prevent the agglomeration of Pt films.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"133"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pt thin-film resistance thermo detectors with stable interfaces for potential integration in SiC high-temperature pressure sensors.\",\"authors\":\"Ziyan Fang, Xiaoyu Wu, Hu Zhao, Xudong Fang, Chen Wu, Dong Zhang, Zhongkai Zhang, Bian Tian, Libo Zhao, Tiefu Li, Prateek Verma, Ryutaro Maeda, Zhuangde Jiang\",\"doi\":\"10.1038/s41378-024-00746-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the excellent mechanical, chemical, and electrical properties of third-generation semiconductor silicon carbide (SiC), pressure sensors utilizing this material might be able to operate in extreme environments with temperatures exceeding 300 °C. However, the significant output drift at elevated temperatures challenges the precision and stability of measurements. Real-time in situ temperature monitoring of the pressure sensor chip is highly important for the accurate compensation of the pressure sensor. In this study, we fabricate platinum (Pt) thin-film resistance temperature detectors (RTDs) on a SiC substrate by incorporating aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) as the transition layer and utilizing aluminum nitride (AlN) grooves for alignment through microfabrication techniques. The composite layers strongly adhere to the substrate at temperatures reaching 950 °C, and the interface of the Al<sub>2</sub>O<sub>3</sub>/Pt bilayer remains stable at elevated temperatures of approximately 950 °C. This stability contributes to the excellent high-temperature electrical performance of the Pt RTD, enabling it to endure temperatures exceeding 850 °C with good linearity. These characteristics establish a basis for the future integration of Pt RTD in SiC pressure sensors. Furthermore, tests and analyses are conducted on the interfacial diffusion, surface morphological, microstructural, and electrical properties of the Pt films at various annealing temperatures. It can be inferred that the tensile stress and self-diffusion of Pt films lead to the formation of hillocks, ultimately reducing the electrical performance of the Pt thin-film RTD. To increase the upper temperature threshold, steps should be taken to prevent the agglomeration of Pt films.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"133\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00746-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00746-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Pt thin-film resistance thermo detectors with stable interfaces for potential integration in SiC high-temperature pressure sensors.
Due to the excellent mechanical, chemical, and electrical properties of third-generation semiconductor silicon carbide (SiC), pressure sensors utilizing this material might be able to operate in extreme environments with temperatures exceeding 300 °C. However, the significant output drift at elevated temperatures challenges the precision and stability of measurements. Real-time in situ temperature monitoring of the pressure sensor chip is highly important for the accurate compensation of the pressure sensor. In this study, we fabricate platinum (Pt) thin-film resistance temperature detectors (RTDs) on a SiC substrate by incorporating aluminum oxide (Al2O3) as the transition layer and utilizing aluminum nitride (AlN) grooves for alignment through microfabrication techniques. The composite layers strongly adhere to the substrate at temperatures reaching 950 °C, and the interface of the Al2O3/Pt bilayer remains stable at elevated temperatures of approximately 950 °C. This stability contributes to the excellent high-temperature electrical performance of the Pt RTD, enabling it to endure temperatures exceeding 850 °C with good linearity. These characteristics establish a basis for the future integration of Pt RTD in SiC pressure sensors. Furthermore, tests and analyses are conducted on the interfacial diffusion, surface morphological, microstructural, and electrical properties of the Pt films at various annealing temperatures. It can be inferred that the tensile stress and self-diffusion of Pt films lead to the formation of hillocks, ultimately reducing the electrical performance of the Pt thin-film RTD. To increase the upper temperature threshold, steps should be taken to prevent the agglomeration of Pt films.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.