{"title":"支链氨基酸平衡的破坏通过增强炎症和纤维化相关的上皮-间质转化促进了 DKD 的进展。","authors":"Xiaoqing Deng, Chao Tang, Ting Fang, Ting Li, Xiaoyu Li, Yajin Liu, Xuejiao Zhang, Bei Sun, Haipeng Sun, Liming Chen","doi":"10.1016/j.metabol.2024.156037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor.</p><p><strong>Methods and results: </strong>Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes.</p><p><strong>Conclusion: </strong>BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.</p>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":" ","pages":"156037"},"PeriodicalIF":10.8000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition.\",\"authors\":\"Xiaoqing Deng, Chao Tang, Ting Fang, Ting Li, Xiaoyu Li, Yajin Liu, Xuejiao Zhang, Bei Sun, Haipeng Sun, Liming Chen\",\"doi\":\"10.1016/j.metabol.2024.156037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor.</p><p><strong>Methods and results: </strong>Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes.</p><p><strong>Conclusion: </strong>BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.</p>\",\"PeriodicalId\":18694,\"journal\":{\"name\":\"Metabolism: clinical and experimental\",\"volume\":\" \",\"pages\":\"156037\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolism: clinical and experimental\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.metabol.2024.156037\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.metabol.2024.156037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition.
Background and aims: The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor.
Methods and results: Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes.
Conclusion: BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism