整合网络药理学、分子对接和实验验证,探索诺米林对三阴性乳腺癌的治疗效果和潜在机制。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2024-09-28 DOI:10.1186/s10020-024-00928-2
Zhixuan Wu, Haoyi Xiang, Xiaowu Wang, Rongrong Zhang, Yangyang Guo, Liangchen Qu, Jingyao Zhou, Yanyi Xiao
{"title":"整合网络药理学、分子对接和实验验证,探索诺米林对三阴性乳腺癌的治疗效果和潜在机制。","authors":"Zhixuan Wu, Haoyi Xiang, Xiaowu Wang, Rongrong Zhang, Yangyang Guo, Liangchen Qu, Jingyao Zhou, Yanyi Xiao","doi":"10.1186/s10020-024-00928-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nomilin is a limonoid compound known for its multiple biological activities, but its role in triple negative breast cancer (TNBC) remains unclear. This study aims to uncover the potential therapeutic effect of nomilin on TNBC and elucidate the specific mechanism of its action.</p><p><strong>Methods: </strong>We employed weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the GeneCards database to identify potential targets for TNBC. Simultaneously, we utilized the Swiss Target Prediction, ChEMBL, and STITCH databases to identify potential targets of nomilin. The core targets and mechanisms of nomilin against TNBC were predicted through protein-protein interaction (PPI) network analysis, molecular docking, and enrichment analysis. The results of the network pharmacology were corroborated by conducting experiments.</p><p><strong>Results: </strong>A total of 17,204 TNBC targets were screened, and 301 potential targets of nomilin were identified. Through the PPI network, eight core targets of nomilin against TNBC were pinpointed, namely BCL2, Caspase3, CyclinD1, EGFR, HSP90AA1, KRAS, PARP1, and TNF. Molecular docking, molecular dynamics simulation and proteome microarray revealed that nomilin exhibits strong binding activity to these core proteins. Enrichment analysis results indicated that the anti-TNBC effect of nomilin is associated with PI3K/Akt pathway. In vitro and in vivo experiments have demonstrated that nomilin inhibits TNBC cell proliferation and migration while promoting cell apoptosis through the PI3K/Akt pathway.</p><p><strong>Conclusion: </strong>For the first time, the research effectively discovered the objectives and mechanisms of nomilin in combating TNBC using network pharmacology, molecular docking, molecular dynamics simulation, proteome microarray and experimental confirmation, presenting a hopeful approach for treating TNBC.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"166"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating network pharmacology, molecular docking and experimental verification to explore the therapeutic effect and potential mechanism of nomilin against triple-negative breast cancer.\",\"authors\":\"Zhixuan Wu, Haoyi Xiang, Xiaowu Wang, Rongrong Zhang, Yangyang Guo, Liangchen Qu, Jingyao Zhou, Yanyi Xiao\",\"doi\":\"10.1186/s10020-024-00928-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nomilin is a limonoid compound known for its multiple biological activities, but its role in triple negative breast cancer (TNBC) remains unclear. This study aims to uncover the potential therapeutic effect of nomilin on TNBC and elucidate the specific mechanism of its action.</p><p><strong>Methods: </strong>We employed weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the GeneCards database to identify potential targets for TNBC. Simultaneously, we utilized the Swiss Target Prediction, ChEMBL, and STITCH databases to identify potential targets of nomilin. The core targets and mechanisms of nomilin against TNBC were predicted through protein-protein interaction (PPI) network analysis, molecular docking, and enrichment analysis. The results of the network pharmacology were corroborated by conducting experiments.</p><p><strong>Results: </strong>A total of 17,204 TNBC targets were screened, and 301 potential targets of nomilin were identified. Through the PPI network, eight core targets of nomilin against TNBC were pinpointed, namely BCL2, Caspase3, CyclinD1, EGFR, HSP90AA1, KRAS, PARP1, and TNF. Molecular docking, molecular dynamics simulation and proteome microarray revealed that nomilin exhibits strong binding activity to these core proteins. Enrichment analysis results indicated that the anti-TNBC effect of nomilin is associated with PI3K/Akt pathway. In vitro and in vivo experiments have demonstrated that nomilin inhibits TNBC cell proliferation and migration while promoting cell apoptosis through the PI3K/Akt pathway.</p><p><strong>Conclusion: </strong>For the first time, the research effectively discovered the objectives and mechanisms of nomilin in combating TNBC using network pharmacology, molecular docking, molecular dynamics simulation, proteome microarray and experimental confirmation, presenting a hopeful approach for treating TNBC.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"30 1\",\"pages\":\"166\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00928-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00928-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:诺米林是一种具有多种生物活性的柠檬类化合物,但它在三阴性乳腺癌(TNBC)中的作用仍不清楚。本研究旨在揭示诺米林对 TNBC 的潜在治疗作用,并阐明其作用的具体机制:方法:我们采用加权基因共表达网络分析(WGCNA)、差异表达分析和GeneCards数据库来确定TNBC的潜在靶点。同时,我们还利用瑞士靶点预测、ChEMBL 和 STITCH 数据库来确定 nomilin 的潜在靶点。通过蛋白-蛋白相互作用(PPI)网络分析、分子对接和富集分析,我们预测了诺米林对TNBC的核心靶点和作用机制。实验证实了网络药理学的结果:结果:共筛选出17204个TNBC靶点,发现了301个Nomilin的潜在靶点。结果:共筛选出17204个TNBC靶点,并确定了301个nomilin的潜在靶点。通过PPI网络,确定了nomilin抗TNBC的8个核心靶点,即BCL2、Caspase3、CyclinD1、EGFR、HSP90AA1、KRAS、PARP1和TNF。分子对接、分子动力学模拟和蛋白质组芯片显示,Nomilin 与这些核心蛋白具有很强的结合活性。富集分析结果表明,nomilin 的抗肿瘤作用与 PI3K/Akt 通路有关。体外和体内实验证明,nomilin能抑制TNBC细胞的增殖和迁移,同时通过PI3K/Akt通路促进细胞凋亡:该研究首次利用网络药理学、分子对接、分子动力学模拟、蛋白质组芯片和实验证实等方法,有效地发现了nomilin对抗TNBC的目的和机制,为治疗TNBC提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating network pharmacology, molecular docking and experimental verification to explore the therapeutic effect and potential mechanism of nomilin against triple-negative breast cancer.

Background: Nomilin is a limonoid compound known for its multiple biological activities, but its role in triple negative breast cancer (TNBC) remains unclear. This study aims to uncover the potential therapeutic effect of nomilin on TNBC and elucidate the specific mechanism of its action.

Methods: We employed weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the GeneCards database to identify potential targets for TNBC. Simultaneously, we utilized the Swiss Target Prediction, ChEMBL, and STITCH databases to identify potential targets of nomilin. The core targets and mechanisms of nomilin against TNBC were predicted through protein-protein interaction (PPI) network analysis, molecular docking, and enrichment analysis. The results of the network pharmacology were corroborated by conducting experiments.

Results: A total of 17,204 TNBC targets were screened, and 301 potential targets of nomilin were identified. Through the PPI network, eight core targets of nomilin against TNBC were pinpointed, namely BCL2, Caspase3, CyclinD1, EGFR, HSP90AA1, KRAS, PARP1, and TNF. Molecular docking, molecular dynamics simulation and proteome microarray revealed that nomilin exhibits strong binding activity to these core proteins. Enrichment analysis results indicated that the anti-TNBC effect of nomilin is associated with PI3K/Akt pathway. In vitro and in vivo experiments have demonstrated that nomilin inhibits TNBC cell proliferation and migration while promoting cell apoptosis through the PI3K/Akt pathway.

Conclusion: For the first time, the research effectively discovered the objectives and mechanisms of nomilin in combating TNBC using network pharmacology, molecular docking, molecular dynamics simulation, proteome microarray and experimental confirmation, presenting a hopeful approach for treating TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Decoding the anti-hypertensive mechanism of α-mangostin based on network pharmacology, molecular docking and experimental validation. Leveraging CAR macrophages targeting c-Met for precision immunotherapy in pancreatic cancer: insights from single-cell multi-omics. TAT as a new marker and its use for noninvasive chemical biopsy in NASH diagnosis. TWEAK/Fn14 disrupts Th17/Treg balance and aggravates conjunctivitis by inhibiting the Nrf2/HO-1 pathway in allergic conjunctivitis mice. Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1