{"title":"在肌强直小鼠模型中对沙芬那胺抗肌强直功效的临床前研究。","authors":"Ileana Canfora, Concetta Altamura, Jean-Francois Desaphy, Brigida Boccanegra, Silvia Vailati, Carla Caccia, Elsa Melloni, Gloria Padoani, Annamaria De Luca, Sabata Pierno","doi":"10.1016/j.neurot.2024.e00455","DOIUrl":null,"url":null,"abstract":"<p><p>Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preclinical study of the antimyotonic efficacy of safinamide in the myotonic mouse model.\",\"authors\":\"Ileana Canfora, Concetta Altamura, Jean-Francois Desaphy, Brigida Boccanegra, Silvia Vailati, Carla Caccia, Elsa Melloni, Gloria Padoani, Annamaria De Luca, Sabata Pierno\",\"doi\":\"10.1016/j.neurot.2024.e00455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.</p>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neurot.2024.e00455\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2024.e00455","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Preclinical study of the antimyotonic efficacy of safinamide in the myotonic mouse model.
Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.