Astrid Agorio, Eilyn Mena, Mathias F Rockenbach, Inés Ponce De León
{"title":"在宿主与病原体相互作用中,植物反应的进化是特化新陈代谢的基础。","authors":"Astrid Agorio, Eilyn Mena, Mathias F Rockenbach, Inés Ponce De León","doi":"10.1098/rstb.2023.0370","DOIUrl":null,"url":null,"abstract":"<p><p>In the course of plant evolution from aquatic to terrestrial environments, land plants (embryophytes) acquired a diverse array of specialized metabolites, including phenylpropanoids, flavonoids and cuticle components, enabling adaptation to various environmental stresses. While embryophytes and their closest algal relatives share candidate enzymes responsible for producing some of these compounds, the complete genetic network for their biosynthesis emerged in embryophytes. In this review, we analysed genomic data from chlorophytes, charophytes and embryophytes to identify genes related to phenylpropanoid, flavonoid and cuticle biosynthesis. By integrating published research, transcriptomic data and metabolite studies, we provide a comprehensive overview on how these specialized metabolic pathways have contributed to plant defence responses to pathogens in non-vascular bryophytes and vascular plants throughout evolution. The evidence suggests that these biosynthetic pathways have provided land plants with a repertoire of conserved and lineage-specific compounds, which have shaped immunity against invading pathogens. The discovery of additional enzymes and metabolites involved in bryophyte responses to pathogen infection will provide evolutionary insights into these versatile pathways and their impact on environmental terrestrial challenges.This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230370"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449219/pdf/","citationCount":"0","resultStr":"{\"title\":\"The evolution of plant responses underlying specialized metabolism in host-pathogen interactions.\",\"authors\":\"Astrid Agorio, Eilyn Mena, Mathias F Rockenbach, Inés Ponce De León\",\"doi\":\"10.1098/rstb.2023.0370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the course of plant evolution from aquatic to terrestrial environments, land plants (embryophytes) acquired a diverse array of specialized metabolites, including phenylpropanoids, flavonoids and cuticle components, enabling adaptation to various environmental stresses. While embryophytes and their closest algal relatives share candidate enzymes responsible for producing some of these compounds, the complete genetic network for their biosynthesis emerged in embryophytes. In this review, we analysed genomic data from chlorophytes, charophytes and embryophytes to identify genes related to phenylpropanoid, flavonoid and cuticle biosynthesis. By integrating published research, transcriptomic data and metabolite studies, we provide a comprehensive overview on how these specialized metabolic pathways have contributed to plant defence responses to pathogens in non-vascular bryophytes and vascular plants throughout evolution. The evidence suggests that these biosynthetic pathways have provided land plants with a repertoire of conserved and lineage-specific compounds, which have shaped immunity against invading pathogens. The discovery of additional enzymes and metabolites involved in bryophyte responses to pathogen infection will provide evolutionary insights into these versatile pathways and their impact on environmental terrestrial challenges.This article is part of the theme issue 'The evolution of plant metabolism'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"379 1914\",\"pages\":\"20230370\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2023.0370\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0370","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The evolution of plant responses underlying specialized metabolism in host-pathogen interactions.
In the course of plant evolution from aquatic to terrestrial environments, land plants (embryophytes) acquired a diverse array of specialized metabolites, including phenylpropanoids, flavonoids and cuticle components, enabling adaptation to various environmental stresses. While embryophytes and their closest algal relatives share candidate enzymes responsible for producing some of these compounds, the complete genetic network for their biosynthesis emerged in embryophytes. In this review, we analysed genomic data from chlorophytes, charophytes and embryophytes to identify genes related to phenylpropanoid, flavonoid and cuticle biosynthesis. By integrating published research, transcriptomic data and metabolite studies, we provide a comprehensive overview on how these specialized metabolic pathways have contributed to plant defence responses to pathogens in non-vascular bryophytes and vascular plants throughout evolution. The evidence suggests that these biosynthetic pathways have provided land plants with a repertoire of conserved and lineage-specific compounds, which have shaped immunity against invading pathogens. The discovery of additional enzymes and metabolites involved in bryophyte responses to pathogen infection will provide evolutionary insights into these versatile pathways and their impact on environmental terrestrial challenges.This article is part of the theme issue 'The evolution of plant metabolism'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.