Yucheng Cai, Yan Li, Xuerui Qi, Jianqing Zhao, Li Jiang, Yongchao Tian, Yan Zhu, Weixing Cao, Xiaohu Zhang
{"title":"利用时空融合从近地表 RGB 图像系列推导小麦物候的深度学习方法。","authors":"Yucheng Cai, Yan Li, Xuerui Qi, Jianqing Zhao, Li Jiang, Yongchao Tian, Yan Zhu, Weixing Cao, Xiaohu Zhang","doi":"10.1186/s13007-024-01278-0","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate monitoring of wheat phenological stages is essential for effective crop management and informed agricultural decision-making. Traditional methods often rely on labour-intensive field surveys, which are prone to subjective bias and limited temporal resolution. To address these challenges, this study explores the potential of near-surface cameras combined with an advanced deep-learning approach to derive wheat phenological stages from high-quality, real-time RGB image series. Three deep learning models based on three different spatiotemporal feature fusion methods, namely sequential fusion, synchronous fusion, and parallel fusion, were constructed and evaluated for deriving wheat phenological stages with these near-surface RGB image series. Moreover, the impact of different image resolutions, capture perspectives, and model training strategies on the performance of deep learning models was also investigated. The results indicate that the model using the sequential fusion method is optimal, with an overall accuracy (OA) of 0.935, a mean absolute error (MAE) of 0.069, F1-score (F1) of 0.936, and kappa coefficients (Kappa) of 0.924 in wheat phenological stages. Besides, the enhanced image resolution of 512 × 512 pixels and a suitable image capture perspective, specifically a sensor viewing angle of 40° to 60° vertically, introduce more effective features for phenological stage detection, thereby enhancing the model's accuracy. Furthermore, concerning the model training, applying a two-step fine-tuning strategy will also enhance the model's robustness to random variations in perspective. This research introduces an innovative approach for real-time phenological stage detection and provides a solid foundation for precision agriculture. By accurately deriving critical phenological stages, the methodology developed in this study supports the optimization of crop management practices, which may result in improved resource efficiency and sustainability across diverse agricultural settings. The implications of this work extend beyond wheat, offering a scalable solution that can be adapted to monitor other crops, thereby contributing to more efficient and sustainable agricultural systems.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"153"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443927/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach for deriving wheat phenology from near-surface RGB image series using spatiotemporal fusion.\",\"authors\":\"Yucheng Cai, Yan Li, Xuerui Qi, Jianqing Zhao, Li Jiang, Yongchao Tian, Yan Zhu, Weixing Cao, Xiaohu Zhang\",\"doi\":\"10.1186/s13007-024-01278-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate monitoring of wheat phenological stages is essential for effective crop management and informed agricultural decision-making. Traditional methods often rely on labour-intensive field surveys, which are prone to subjective bias and limited temporal resolution. To address these challenges, this study explores the potential of near-surface cameras combined with an advanced deep-learning approach to derive wheat phenological stages from high-quality, real-time RGB image series. Three deep learning models based on three different spatiotemporal feature fusion methods, namely sequential fusion, synchronous fusion, and parallel fusion, were constructed and evaluated for deriving wheat phenological stages with these near-surface RGB image series. Moreover, the impact of different image resolutions, capture perspectives, and model training strategies on the performance of deep learning models was also investigated. The results indicate that the model using the sequential fusion method is optimal, with an overall accuracy (OA) of 0.935, a mean absolute error (MAE) of 0.069, F1-score (F1) of 0.936, and kappa coefficients (Kappa) of 0.924 in wheat phenological stages. Besides, the enhanced image resolution of 512 × 512 pixels and a suitable image capture perspective, specifically a sensor viewing angle of 40° to 60° vertically, introduce more effective features for phenological stage detection, thereby enhancing the model's accuracy. Furthermore, concerning the model training, applying a two-step fine-tuning strategy will also enhance the model's robustness to random variations in perspective. This research introduces an innovative approach for real-time phenological stage detection and provides a solid foundation for precision agriculture. By accurately deriving critical phenological stages, the methodology developed in this study supports the optimization of crop management practices, which may result in improved resource efficiency and sustainability across diverse agricultural settings. The implications of this work extend beyond wheat, offering a scalable solution that can be adapted to monitor other crops, thereby contributing to more efficient and sustainable agricultural systems.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"153\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443927/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01278-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01278-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A deep learning approach for deriving wheat phenology from near-surface RGB image series using spatiotemporal fusion.
Accurate monitoring of wheat phenological stages is essential for effective crop management and informed agricultural decision-making. Traditional methods often rely on labour-intensive field surveys, which are prone to subjective bias and limited temporal resolution. To address these challenges, this study explores the potential of near-surface cameras combined with an advanced deep-learning approach to derive wheat phenological stages from high-quality, real-time RGB image series. Three deep learning models based on three different spatiotemporal feature fusion methods, namely sequential fusion, synchronous fusion, and parallel fusion, were constructed and evaluated for deriving wheat phenological stages with these near-surface RGB image series. Moreover, the impact of different image resolutions, capture perspectives, and model training strategies on the performance of deep learning models was also investigated. The results indicate that the model using the sequential fusion method is optimal, with an overall accuracy (OA) of 0.935, a mean absolute error (MAE) of 0.069, F1-score (F1) of 0.936, and kappa coefficients (Kappa) of 0.924 in wheat phenological stages. Besides, the enhanced image resolution of 512 × 512 pixels and a suitable image capture perspective, specifically a sensor viewing angle of 40° to 60° vertically, introduce more effective features for phenological stage detection, thereby enhancing the model's accuracy. Furthermore, concerning the model training, applying a two-step fine-tuning strategy will also enhance the model's robustness to random variations in perspective. This research introduces an innovative approach for real-time phenological stage detection and provides a solid foundation for precision agriculture. By accurately deriving critical phenological stages, the methodology developed in this study supports the optimization of crop management practices, which may result in improved resource efficiency and sustainability across diverse agricultural settings. The implications of this work extend beyond wheat, offering a scalable solution that can be adapted to monitor other crops, thereby contributing to more efficient and sustainable agricultural systems.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.