{"title":"禽致病性大肠杆菌的氧化应激反应。","authors":"Lumin Yu , Hui Wang , Xinglin Zhang , Ting Xue","doi":"10.1016/j.rvsc.2024.105426","DOIUrl":null,"url":null,"abstract":"<div><div>Avian pathogenic <em>Escherichia coli</em> (APEC) leads to significant economic losses in the poultry industry worldwide and restricts the development of the poultry industry. Oxidative stress, through the production of reactive oxygen species (ROS), damage iron‑sulfur (Fe<img>S) clusters, cysteine and methionine protein residues, and DNA, and then result in bacterial cells death. APEC has evolved a series of regulation systems to sense and quickly and appropriately respond to oxidative stress. Quorum sensing (QS), second messenger (SM), transcription factors (TFs), small regulatory RNAs (sRNAs), and two-component system (TCS) are important regulation systems ubiquitous in bacteria. It is of great significance to control APEC infection through investigating the molecular regulation mechanism on APEC adapting to oxidative stress. However, how the cross-talk among these regulation systems co-regulates transcription of oxidative stress-response genes in APEC has not been reported. This review suggests exploring connector proteins that co-regulate these regulation systems that co-activate transcription of oxidative stress-response genes to disrupt bacterial antioxidative defense mechanism in APEC, and then using these connector proteins as drug targets to control APEC infection. This review might contribute to illustrating the functional mechanism of APEC adapting to oxidative stress and exploring potential drug targets for the prevention and treatment of APEC infection.</div></div>","PeriodicalId":21083,"journal":{"name":"Research in veterinary science","volume":"180 ","pages":"Article 105426"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress response in avian pathogenic Escherichia coli\",\"authors\":\"Lumin Yu , Hui Wang , Xinglin Zhang , Ting Xue\",\"doi\":\"10.1016/j.rvsc.2024.105426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Avian pathogenic <em>Escherichia coli</em> (APEC) leads to significant economic losses in the poultry industry worldwide and restricts the development of the poultry industry. Oxidative stress, through the production of reactive oxygen species (ROS), damage iron‑sulfur (Fe<img>S) clusters, cysteine and methionine protein residues, and DNA, and then result in bacterial cells death. APEC has evolved a series of regulation systems to sense and quickly and appropriately respond to oxidative stress. Quorum sensing (QS), second messenger (SM), transcription factors (TFs), small regulatory RNAs (sRNAs), and two-component system (TCS) are important regulation systems ubiquitous in bacteria. It is of great significance to control APEC infection through investigating the molecular regulation mechanism on APEC adapting to oxidative stress. However, how the cross-talk among these regulation systems co-regulates transcription of oxidative stress-response genes in APEC has not been reported. This review suggests exploring connector proteins that co-regulate these regulation systems that co-activate transcription of oxidative stress-response genes to disrupt bacterial antioxidative defense mechanism in APEC, and then using these connector proteins as drug targets to control APEC infection. This review might contribute to illustrating the functional mechanism of APEC adapting to oxidative stress and exploring potential drug targets for the prevention and treatment of APEC infection.</div></div>\",\"PeriodicalId\":21083,\"journal\":{\"name\":\"Research in veterinary science\",\"volume\":\"180 \",\"pages\":\"Article 105426\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in veterinary science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034528824002935\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in veterinary science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034528824002935","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Oxidative stress response in avian pathogenic Escherichia coli
Avian pathogenic Escherichia coli (APEC) leads to significant economic losses in the poultry industry worldwide and restricts the development of the poultry industry. Oxidative stress, through the production of reactive oxygen species (ROS), damage iron‑sulfur (FeS) clusters, cysteine and methionine protein residues, and DNA, and then result in bacterial cells death. APEC has evolved a series of regulation systems to sense and quickly and appropriately respond to oxidative stress. Quorum sensing (QS), second messenger (SM), transcription factors (TFs), small regulatory RNAs (sRNAs), and two-component system (TCS) are important regulation systems ubiquitous in bacteria. It is of great significance to control APEC infection through investigating the molecular regulation mechanism on APEC adapting to oxidative stress. However, how the cross-talk among these regulation systems co-regulates transcription of oxidative stress-response genes in APEC has not been reported. This review suggests exploring connector proteins that co-regulate these regulation systems that co-activate transcription of oxidative stress-response genes to disrupt bacterial antioxidative defense mechanism in APEC, and then using these connector proteins as drug targets to control APEC infection. This review might contribute to illustrating the functional mechanism of APEC adapting to oxidative stress and exploring potential drug targets for the prevention and treatment of APEC infection.
期刊介绍:
Research in Veterinary Science is an International multi-disciplinary journal publishing original articles, reviews and short communications of a high scientific and ethical standard in all aspects of veterinary and biomedical research.
The primary aim of the journal is to inform veterinary and biomedical scientists of significant advances in veterinary and related research through prompt publication and dissemination. Secondly, the journal aims to provide a general multi-disciplinary forum for discussion and debate of news and issues concerning veterinary science. Thirdly, to promote the dissemination of knowledge to a broader range of professions, globally.
High quality papers on all species of animals are considered, particularly those considered to be of high scientific importance and originality, and with interdisciplinary interest. The journal encourages papers providing results that have clear implications for understanding disease pathogenesis and for the development of control measures or treatments, as well as those dealing with a comparative biomedical approach, which represents a substantial improvement to animal and human health.
Studies without a robust scientific hypothesis or that are preliminary, or of weak originality, as well as negative results, are not appropriate for the journal. Furthermore, observational approaches, case studies or field reports lacking an advancement in general knowledge do not fall within the scope of the journal.