超灵敏太赫兹无标签元传感器由连续体中的准束缚态实现

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-09-26 eCollection Date: 2024-01-01 DOI:10.34133/research.0483
Ride Wang, Lingyu Song, Hao Ruan, Quanlong Yang, Xiao Yang, Xiaobao Zhang, Rundong Jiang, Xiangmin Shi, Alexander P Shkurinov
{"title":"超灵敏太赫兹无标签元传感器由连续体中的准束缚态实现","authors":"Ride Wang, Lingyu Song, Hao Ruan, Quanlong Yang, Xiao Yang, Xiaobao Zhang, Rundong Jiang, Xiangmin Shi, Alexander P Shkurinov","doi":"10.34133/research.0483","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced sensing devices based on metasurfaces have emerged as a revolutionary platform for innovative label-free biosensors, holding promise for early diagnostics and the detection of low-concentration analytes. Here, we developed a chip-based ultrasensitive terahertz (THz) metasensor, leveraging a quasi-bound state in the continuum (<i>q-</i>BIC) to address the challenges associated with intricate operations in trace biochemical detection. The metasensor design features an open-ring resonator metasurface, which supports magnetic dipole <i>q</i>-BIC combining functionalized gold nanoparticles (AuNPs) bound with a specific antibody. The substantial enhancement in THz-analyte interactions, facilitated by the potent near-field enhancement enabled by the <i>q</i>-BICs, results in a substantial boost in biosensor sensitivity by up to 560 GHz/refractive index units. This methodology allows for the detection of conjugated antibody-AuNPs for cardiac troponin I at concentrations as low as 0.5 pg/ml. These discoveries deliver valuable insight for AuNP-based trace biomolecule sensing and pave the path for the development of chip-scale biosensors with profound light-matter interactions.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":null,"pages":null},"PeriodicalIF":11.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425342/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum.\",\"authors\":\"Ride Wang, Lingyu Song, Hao Ruan, Quanlong Yang, Xiao Yang, Xiaobao Zhang, Rundong Jiang, Xiangmin Shi, Alexander P Shkurinov\",\"doi\":\"10.34133/research.0483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced sensing devices based on metasurfaces have emerged as a revolutionary platform for innovative label-free biosensors, holding promise for early diagnostics and the detection of low-concentration analytes. Here, we developed a chip-based ultrasensitive terahertz (THz) metasensor, leveraging a quasi-bound state in the continuum (<i>q-</i>BIC) to address the challenges associated with intricate operations in trace biochemical detection. The metasensor design features an open-ring resonator metasurface, which supports magnetic dipole <i>q</i>-BIC combining functionalized gold nanoparticles (AuNPs) bound with a specific antibody. The substantial enhancement in THz-analyte interactions, facilitated by the potent near-field enhancement enabled by the <i>q</i>-BICs, results in a substantial boost in biosensor sensitivity by up to 560 GHz/refractive index units. This methodology allows for the detection of conjugated antibody-AuNPs for cardiac troponin I at concentrations as low as 0.5 pg/ml. These discoveries deliver valuable insight for AuNP-based trace biomolecule sensing and pave the path for the development of chip-scale biosensors with profound light-matter interactions.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425342/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0483\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0483","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

基于元表面的先进传感设备已成为创新型无标记生物传感器的革命性平台,有望用于早期诊断和低浓度分析物的检测。在这里,我们开发了一种基于芯片的超灵敏太赫兹(THz)元传感器,利用连续体中的准结合态(q-BIC)来应对痕量生化检测中复杂操作带来的挑战。该元传感器的设计特点是采用开环谐振器元表面,支持与特定抗体结合的功能化金纳米粒子(AuNPs)的磁偶极q-BIC。在 q-BIC 强效近场增强的作用下,太赫兹与分析物之间的相互作用大大增强,从而使生物传感器的灵敏度大幅提高,最高可达 560 GHz/折射率单位。通过这种方法,可以检测浓度低至 0.5 pg/ml 的心肌肌钙蛋白 I 抗体-AuNPs。这些发现为基于 AuNP 的痕量生物大分子传感提供了宝贵的见解,并为开发具有深刻光-物质相互作用的芯片级生物传感器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum.

Advanced sensing devices based on metasurfaces have emerged as a revolutionary platform for innovative label-free biosensors, holding promise for early diagnostics and the detection of low-concentration analytes. Here, we developed a chip-based ultrasensitive terahertz (THz) metasensor, leveraging a quasi-bound state in the continuum (q-BIC) to address the challenges associated with intricate operations in trace biochemical detection. The metasensor design features an open-ring resonator metasurface, which supports magnetic dipole q-BIC combining functionalized gold nanoparticles (AuNPs) bound with a specific antibody. The substantial enhancement in THz-analyte interactions, facilitated by the potent near-field enhancement enabled by the q-BICs, results in a substantial boost in biosensor sensitivity by up to 560 GHz/refractive index units. This methodology allows for the detection of conjugated antibody-AuNPs for cardiac troponin I at concentrations as low as 0.5 pg/ml. These discoveries deliver valuable insight for AuNP-based trace biomolecule sensing and pave the path for the development of chip-scale biosensors with profound light-matter interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Distinct Olfactory Bulb-Cortex Neural Circuits Coordinate Cognitive Function in Parkinson's Disease. Quantum 2-Player Games and Realizations with Circuits. Dietary "Beigeing" Fat Contains More Phosphatidylserine and Enhances Mitochondrial Function while Counteracting Obesity. Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum. Machine Learning Enables Comprehensive Prediction of the Relative Protein Abundance of Multiple Proteins on the Protein Corona.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1