Carbene-Catalyzed Phthalide Ether Functionalization for Discovering Chiral Phytovirucide that Specifically Targets Viral Nia Protein to Inhibit Proliferation.
Xiaoyi Wang, Weijia Yang, Shang Wu, Fangru Jin, Zhongjie Shen, Xiangyang Li, Yonggui Robin Chi, Baoan Song, Runjiang Song
{"title":"Carbene-Catalyzed Phthalide Ether Functionalization for Discovering Chiral Phytovirucide that Specifically Targets Viral Nia Protein to Inhibit Proliferation.","authors":"Xiaoyi Wang, Weijia Yang, Shang Wu, Fangru Jin, Zhongjie Shen, Xiangyang Li, Yonggui Robin Chi, Baoan Song, Runjiang Song","doi":"10.34133/research.0637","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases caused by vegetable viruses are an important threat to global food security, presenting a major challenge for the development of antiviral agrochemicals. Functional proteins of plant viruses play a crucial role in the viral life cycle, and targeted inhibition of these proteins has emerged as a promising strategy. However, the current discovery of antiviral small molecules is hampered by the limitations of synthetic approaches and the narrow range of targets. Herein, we report a practical application of organocatalysis for serving pesticide discovery that bears a unique molecular basis. An <i>N</i>-heterocyclic carbene-modulated reaction is first designed to asymmetrically functionalize diverse natural phenols with phthalides. Our designed method is capable of producing a series of new phthalidyl ethers under mild conditions with good yields, enantioselectivity, and functional group tolerance. Among these, compound (<i>R</i>)-<b>3w</b> exhibits excellent and enantioselectivity-preferred curative activity against potato virus Y (PVY). Mechanistically, it is proposed that (<i>R</i>)-<b>3w</b> interacts with the nuclear inclusion body A (Nia) protein of PVY at the His150 residue. This binding impairs Nia's function to cleavage polyprotein, thereby inhibiting formation of viral replication complex. The study provides insights into advancing synthetic protocol to facilitate agrochemical discovery, and our identified (<i>R</i>)-<b>3w</b> may serve as a potential lead for future research and development PVY-Nia inhibitors.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0637"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0637","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Plant diseases caused by vegetable viruses are an important threat to global food security, presenting a major challenge for the development of antiviral agrochemicals. Functional proteins of plant viruses play a crucial role in the viral life cycle, and targeted inhibition of these proteins has emerged as a promising strategy. However, the current discovery of antiviral small molecules is hampered by the limitations of synthetic approaches and the narrow range of targets. Herein, we report a practical application of organocatalysis for serving pesticide discovery that bears a unique molecular basis. An N-heterocyclic carbene-modulated reaction is first designed to asymmetrically functionalize diverse natural phenols with phthalides. Our designed method is capable of producing a series of new phthalidyl ethers under mild conditions with good yields, enantioselectivity, and functional group tolerance. Among these, compound (R)-3w exhibits excellent and enantioselectivity-preferred curative activity against potato virus Y (PVY). Mechanistically, it is proposed that (R)-3w interacts with the nuclear inclusion body A (Nia) protein of PVY at the His150 residue. This binding impairs Nia's function to cleavage polyprotein, thereby inhibiting formation of viral replication complex. The study provides insights into advancing synthetic protocol to facilitate agrochemical discovery, and our identified (R)-3w may serve as a potential lead for future research and development PVY-Nia inhibitors.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.