用于低成本无人机在全球导航卫星系统(GNSS)临界环境中导航的实时运动学(RTK)定位的可靠性。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-09-20 DOI:10.3390/s24186096
Luca Tavasci, Francesco Nex, Stefano Gandolfi
{"title":"用于低成本无人机在全球导航卫星系统(GNSS)临界环境中导航的实时运动学(RTK)定位的可靠性。","authors":"Luca Tavasci, Francesco Nex, Stefano Gandolfi","doi":"10.3390/s24186096","DOIUrl":null,"url":null,"abstract":"<p><p>UAVs are nowadays used for several surveying activities, some of which imply flying close to tall walls, in and out of tunnels, under bridges, and so forth. In these applications, RTK GNSS positioning delivers results with very variable quality. It allows for centimetric-level kinematic navigation in real time in ideal conditions, but limitations in sky visibility or strong multipath effects negatively impact the positioning quality. This paper aims at assessing the RTK positioning limitations for lightweight and low-cost drones carrying cheap GNSS modules when used to fly in some meaningful critical operational conditions. Three demanding scenarios have been set up simulating the trajectories of drones in tasks such as infrastructure (i.e., building or bridges) inspection. Different outage durations, flight dynamics, and obstacle sizes have been considered in this work to have a complete overview of the positioning quality. The performed tests have allowed us to define practical recommendations to safely fly drones in potentially critical environments just by considering common software and standard GNSS parameters.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435761/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reliability of Real-Time Kinematic (RTK) Positioning for Low-Cost Drones' Navigation across Global Navigation Satellite System (GNSS) Critical Environments.\",\"authors\":\"Luca Tavasci, Francesco Nex, Stefano Gandolfi\",\"doi\":\"10.3390/s24186096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>UAVs are nowadays used for several surveying activities, some of which imply flying close to tall walls, in and out of tunnels, under bridges, and so forth. In these applications, RTK GNSS positioning delivers results with very variable quality. It allows for centimetric-level kinematic navigation in real time in ideal conditions, but limitations in sky visibility or strong multipath effects negatively impact the positioning quality. This paper aims at assessing the RTK positioning limitations for lightweight and low-cost drones carrying cheap GNSS modules when used to fly in some meaningful critical operational conditions. Three demanding scenarios have been set up simulating the trajectories of drones in tasks such as infrastructure (i.e., building or bridges) inspection. Different outage durations, flight dynamics, and obstacle sizes have been considered in this work to have a complete overview of the positioning quality. The performed tests have allowed us to define practical recommendations to safely fly drones in potentially critical environments just by considering common software and standard GNSS parameters.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435761/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24186096\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24186096","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

如今,无人机被用于多种测量活动,其中一些活动意味着要飞近高墙、进出隧道和桥下等等。在这些应用中,RTK GNSS 定位所提供的结果质量参差不齐。在理想条件下,它可以实现厘米级的实时运动导航,但天空能见度的限制或强烈的多径效应会对定位质量产生负面影响。本文旨在评估携带廉价 GNSS 模块的轻型低成本无人机在一些重要的操作条件下飞行时的 RTK 定位限制。本文设置了三个苛刻的场景,模拟无人机在基础设施(如建筑或桥梁)检测等任务中的飞行轨迹。为了全面了解定位质量,这项工作考虑了不同的中断时间、飞行动态和障碍物大小。通过所进行的测试,我们只需考虑通用软件和标准 GNSS 参数,就能为无人机在潜在的关键环境中安全飞行提供实用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability of Real-Time Kinematic (RTK) Positioning for Low-Cost Drones' Navigation across Global Navigation Satellite System (GNSS) Critical Environments.

UAVs are nowadays used for several surveying activities, some of which imply flying close to tall walls, in and out of tunnels, under bridges, and so forth. In these applications, RTK GNSS positioning delivers results with very variable quality. It allows for centimetric-level kinematic navigation in real time in ideal conditions, but limitations in sky visibility or strong multipath effects negatively impact the positioning quality. This paper aims at assessing the RTK positioning limitations for lightweight and low-cost drones carrying cheap GNSS modules when used to fly in some meaningful critical operational conditions. Three demanding scenarios have been set up simulating the trajectories of drones in tasks such as infrastructure (i.e., building or bridges) inspection. Different outage durations, flight dynamics, and obstacle sizes have been considered in this work to have a complete overview of the positioning quality. The performed tests have allowed us to define practical recommendations to safely fly drones in potentially critical environments just by considering common software and standard GNSS parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1