能诱导萝卜小仓雄性不育的 orf138 mRNA 分裂的新生育力恢复基因的鉴定和变异。

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-09-25 DOI:10.1007/s00122-024-04736-4
Hiroshi Yamagishi, Ayako Hashimoto, Asumi Fukunaga, Mizuki Takenaka, Toru Terachi
{"title":"能诱导萝卜小仓雄性不育的 orf138 mRNA 分裂的新生育力恢复基因的鉴定和变异。","authors":"Hiroshi Yamagishi, Ayako Hashimoto, Asumi Fukunaga, Mizuki Takenaka, Toru Terachi","doi":"10.1007/s00122-024-04736-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A new restorer of fertility gene, Rfs, of Ogura cytoplasmic male sterility (CMS) in radish encodes a pentatricopeptide repeat protein that binds to 15 nucleotides in mRNA of the CMS gene, orf138. Nucleotide substitutions in both Rfs and orf138 determine effectiveness and specificity of restoration. Cytoplasmic male sterility (CMS) in plants caused by the expression of abnormal mitochondrial genes results from impaired pollen production. The manifestation of CMS is suppressed by the restorer of fertility (Rf) genes in the nuclear genome. Thus, the CMS-Rf system is a suitable model for studying the direct interactions of mitochondrial and nuclear genes. At least nine haplotypes, of which Type B is ancestry, have been reported for the Ogura CMS gene, orf138, in radish (Raphanus sativus). We previously observed that Rfo encoding a pentatricopeptide repeat (PPR) protein, ORF687, which inhibits the translation of orf138 is ineffective in one haplotype (i.e., Type H). Here, we carried out map-based cloning of another Rf gene (Rfs) that cleaves the orf138 mRNA of Type H. Rfs produces a PPR protein consisting of 15 PPR motifs that binds to the mRNA, cleaving the mRNA at about 50nt downstream of the binding site. However, Rfs was ineffective for Type A because of a single nucleotide substitution in the binding site. Both Rfo and Rfs suppress orf138 expression in ancestral Type B, but they are rendered ineffective in Type H and Type A, respectively, by a single nucleotide substitution in orf138.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"231"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and variation of a new restorer of fertility gene that induces cleavage in orf138 mRNA of Ogura male sterility in radish.\",\"authors\":\"Hiroshi Yamagishi, Ayako Hashimoto, Asumi Fukunaga, Mizuki Takenaka, Toru Terachi\",\"doi\":\"10.1007/s00122-024-04736-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>A new restorer of fertility gene, Rfs, of Ogura cytoplasmic male sterility (CMS) in radish encodes a pentatricopeptide repeat protein that binds to 15 nucleotides in mRNA of the CMS gene, orf138. Nucleotide substitutions in both Rfs and orf138 determine effectiveness and specificity of restoration. Cytoplasmic male sterility (CMS) in plants caused by the expression of abnormal mitochondrial genes results from impaired pollen production. The manifestation of CMS is suppressed by the restorer of fertility (Rf) genes in the nuclear genome. Thus, the CMS-Rf system is a suitable model for studying the direct interactions of mitochondrial and nuclear genes. At least nine haplotypes, of which Type B is ancestry, have been reported for the Ogura CMS gene, orf138, in radish (Raphanus sativus). We previously observed that Rfo encoding a pentatricopeptide repeat (PPR) protein, ORF687, which inhibits the translation of orf138 is ineffective in one haplotype (i.e., Type H). Here, we carried out map-based cloning of another Rf gene (Rfs) that cleaves the orf138 mRNA of Type H. Rfs produces a PPR protein consisting of 15 PPR motifs that binds to the mRNA, cleaving the mRNA at about 50nt downstream of the binding site. However, Rfs was ineffective for Type A because of a single nucleotide substitution in the binding site. Both Rfo and Rfs suppress orf138 expression in ancestral Type B, but they are rendered ineffective in Type H and Type A, respectively, by a single nucleotide substitution in orf138.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"137 10\",\"pages\":\"231\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04736-4\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04736-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:萝卜小仓细胞质雄性不育(CMS)的一个新的生育力恢复基因Rfs编码一个五肽重复蛋白,该蛋白与CMS基因orf138的mRNA中的15个核苷酸结合。Rfs 和 orf138 中的核苷酸取代决定了恢复的有效性和特异性。线粒体基因表达异常导致的植物细胞质雄性不育(CMS)会影响花粉的产生。细胞质雄性不育的表现受到核基因组中生育力恢复基因(Rf)的抑制。因此,CMS-Rf 系统是研究线粒体基因与核基因直接相互作用的合适模型。据报道,萝卜(Raphanus sativus)中的小仓 CMS 基因 orf138 至少有九种单倍型,其中 B 型是祖先型。我们之前观察到,编码五肽重复(PPR)蛋白 ORF687 的 Rfo 在一个单倍型(即 H 型)中无效,而 ORF687 能抑制 orf138 的翻译。在此,我们基于图谱克隆了另一个能裂解 H 型 orf138 mRNA 的 Rf 基因(Rfs)。Rfs 产生的 PPR 蛋白由 15 个 PPR 基序组成,能与 mRNA 结合,并在结合位点下游约 50nt 处裂解 mRNA。然而,由于结合位点的单核苷酸置换,Rfs 对 A 型无效。Rfo 和 Rfs 都能抑制 B 型祖先中 orf138 的表达,但在 H 型和 A 型中,由于 orf138 中一个核苷酸的置换,它们分别失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and variation of a new restorer of fertility gene that induces cleavage in orf138 mRNA of Ogura male sterility in radish.

Key message: A new restorer of fertility gene, Rfs, of Ogura cytoplasmic male sterility (CMS) in radish encodes a pentatricopeptide repeat protein that binds to 15 nucleotides in mRNA of the CMS gene, orf138. Nucleotide substitutions in both Rfs and orf138 determine effectiveness and specificity of restoration. Cytoplasmic male sterility (CMS) in plants caused by the expression of abnormal mitochondrial genes results from impaired pollen production. The manifestation of CMS is suppressed by the restorer of fertility (Rf) genes in the nuclear genome. Thus, the CMS-Rf system is a suitable model for studying the direct interactions of mitochondrial and nuclear genes. At least nine haplotypes, of which Type B is ancestry, have been reported for the Ogura CMS gene, orf138, in radish (Raphanus sativus). We previously observed that Rfo encoding a pentatricopeptide repeat (PPR) protein, ORF687, which inhibits the translation of orf138 is ineffective in one haplotype (i.e., Type H). Here, we carried out map-based cloning of another Rf gene (Rfs) that cleaves the orf138 mRNA of Type H. Rfs produces a PPR protein consisting of 15 PPR motifs that binds to the mRNA, cleaving the mRNA at about 50nt downstream of the binding site. However, Rfs was ineffective for Type A because of a single nucleotide substitution in the binding site. Both Rfo and Rfs suppress orf138 expression in ancestral Type B, but they are rendered ineffective in Type H and Type A, respectively, by a single nucleotide substitution in orf138.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. Cytological mapping of a powdery mildew resistance locus PmRc1 based on wheat-Roegneria ciliaris structural rearrangement library. Exploiting light energy utilization strategies in Populus simonii through multitrait-GWAS: insights from stochastic differential models. Stacking beneficial haplotypes from the Vavilov wheat collection to accelerate breeding for multiple disease resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1