{"title":"通过 QTL 映射和 Omics 分析确定控制玉米籽粒脱水的基因。","authors":"Xining Jin, Xiaoxiang Zhang, Pingxi Wang, Juan Liu, Huaisheng Zhang, Xiangyuan Wu, Rui Song, Zhiyuan Fu, Shilin Chen","doi":"10.1007/s00122-024-04715-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>This study mapped and screened three candidate genes related to kernel dehydration in maize. The slow development rate of maize kernels during later stages leads to high kernel moisture content at harvest, posing a challenge for mechanized maize harvesting in China. This study utilized a recombinant inbred line population derived from Zheng 58 (slow dehydration) and PH6WC (fast dehydration) as parents. After four years of trait investigation and analysis, 25 quantitative trait loci (QTLs) associated with kernel dehydration rate and moisture content were identified, with six QTLs showing a significant contribution value exceeding 10% in the phenotype. Furthermore, a comparison was made between the QTLs identified in this study and those from previous research on maize kernel moisture content and dehydration rate, followed by screening through the omics analysis of the parental lines. Three candidate genes related to kernel dehydration rate were identified, primarily involving carbohydrate metabolism, energy metabolism processes (Zm00001d014030 and Zm00001d006476), and stimulus resistance (Zm00001d040113). These findings provide valuable insights to assist and guide future breeding efforts for mechanical harvesting of maize.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 10","pages":"233"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QTL mapping and omics analysis to identify genes controlling kernel dehydration in maize.\",\"authors\":\"Xining Jin, Xiaoxiang Zhang, Pingxi Wang, Juan Liu, Huaisheng Zhang, Xiangyuan Wu, Rui Song, Zhiyuan Fu, Shilin Chen\",\"doi\":\"10.1007/s00122-024-04715-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>This study mapped and screened three candidate genes related to kernel dehydration in maize. The slow development rate of maize kernels during later stages leads to high kernel moisture content at harvest, posing a challenge for mechanized maize harvesting in China. This study utilized a recombinant inbred line population derived from Zheng 58 (slow dehydration) and PH6WC (fast dehydration) as parents. After four years of trait investigation and analysis, 25 quantitative trait loci (QTLs) associated with kernel dehydration rate and moisture content were identified, with six QTLs showing a significant contribution value exceeding 10% in the phenotype. Furthermore, a comparison was made between the QTLs identified in this study and those from previous research on maize kernel moisture content and dehydration rate, followed by screening through the omics analysis of the parental lines. Three candidate genes related to kernel dehydration rate were identified, primarily involving carbohydrate metabolism, energy metabolism processes (Zm00001d014030 and Zm00001d006476), and stimulus resistance (Zm00001d040113). These findings provide valuable insights to assist and guide future breeding efforts for mechanical harvesting of maize.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"137 10\",\"pages\":\"233\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04715-9\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04715-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
QTL mapping and omics analysis to identify genes controlling kernel dehydration in maize.
Key message: This study mapped and screened three candidate genes related to kernel dehydration in maize. The slow development rate of maize kernels during later stages leads to high kernel moisture content at harvest, posing a challenge for mechanized maize harvesting in China. This study utilized a recombinant inbred line population derived from Zheng 58 (slow dehydration) and PH6WC (fast dehydration) as parents. After four years of trait investigation and analysis, 25 quantitative trait loci (QTLs) associated with kernel dehydration rate and moisture content were identified, with six QTLs showing a significant contribution value exceeding 10% in the phenotype. Furthermore, a comparison was made between the QTLs identified in this study and those from previous research on maize kernel moisture content and dehydration rate, followed by screening through the omics analysis of the parental lines. Three candidate genes related to kernel dehydration rate were identified, primarily involving carbohydrate metabolism, energy metabolism processes (Zm00001d014030 and Zm00001d006476), and stimulus resistance (Zm00001d040113). These findings provide valuable insights to assist and guide future breeding efforts for mechanical harvesting of maize.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.