Francisco Alves Pereira, Flavio Aguiar Coelho, Laya Kannan Silva Alves, Fernanda Mariane Dos Santos, Erick Marlon Pereira, Clarice Speridiao Silva Neta, Felipe Norberto Alves Ferreira, Ana Caroline Rodrigues da Cunha, Monique Danielle Pairis-Garcia, Cesar Augusto Pospissil Garbossa
{"title":"黑曲霉或大肠杆菌植酸酶剂量对保育仔猪生产性能的影响","authors":"Francisco Alves Pereira, Flavio Aguiar Coelho, Laya Kannan Silva Alves, Fernanda Mariane Dos Santos, Erick Marlon Pereira, Clarice Speridiao Silva Neta, Felipe Norberto Alves Ferreira, Ana Caroline Rodrigues da Cunha, Monique Danielle Pairis-Garcia, Cesar Augusto Pospissil Garbossa","doi":"10.1093/tas/txae132","DOIUrl":null,"url":null,"abstract":"<p><p>Supplementing swine diets with phytase increases phosphorus release by approximately 50% from cereal phytates. The increase in phosphorus availability allows for a reduction in dietary phosphorus supplementation from mineral sources and decreases the environmental impact of pork production through a decrease in phosphorus excretion. Superdosing phytase has been reported to boost swine productivity, improve the digestibility of other nutrients, and mitigate the antinutritional effects of phytates. However, there are significant cost differences among phytase products. Bacterial phytases are considered more modern, often with a higher cost of inclusion. A study was conducted with 288 piglets that were 21 d of age and weighed 6.43 ± 0.956 kg. Pigs were divided into four groups. Each group of pigs was fed a different experimental diet varying in phytase source and level: fungal phytase (<i>Aspergillus niger</i>) at 500 FTU/kg of diet, fungal phytase at 2,000 FTU/kg, bacterial phytase (<i>Escherichia coli</i>) at 500 FTU/kg, and bacterial phytase at 2,000 FTU/kg. No differences were found for phytase sources or doses on productivity at 14 and 21 d postweaning. However, piglets supplemented with 2,000 FTUs/kg of phytase in the diet during the first 21 d of nursery exhibited a 5.8% better feed conversion (<i>P</i> = 0.02). An interaction between phytase source and dose was observed for average live weight and daily weight gain over the 42-d nursery period (<i>P</i> < 0.05). Supplementing the diet with 2,000 FTU/kg of fungal phytase improved daily weight gain and live weight throughout the experimental period compared to piglets supplemented with 500 FTU/kg of the same phytase source. Additionally, it resulted in better final weights compared to piglets supplemented with 500 FTU/kg of bacterial phytase. Phytase inclusion at 2,000 FTU/kg improved feed conversion by 2.07% over the 42-d nursery period. The most economically favorable feed conversion ratios were observed when supplementing the diet with fungal phytase at 2,000 FTUs/kg.</p>","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439148/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dose of phytase from either <i>Aspergillus niger</i> or <i>Escherichia coli</i> on performance of nursery piglets.\",\"authors\":\"Francisco Alves Pereira, Flavio Aguiar Coelho, Laya Kannan Silva Alves, Fernanda Mariane Dos Santos, Erick Marlon Pereira, Clarice Speridiao Silva Neta, Felipe Norberto Alves Ferreira, Ana Caroline Rodrigues da Cunha, Monique Danielle Pairis-Garcia, Cesar Augusto Pospissil Garbossa\",\"doi\":\"10.1093/tas/txae132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Supplementing swine diets with phytase increases phosphorus release by approximately 50% from cereal phytates. The increase in phosphorus availability allows for a reduction in dietary phosphorus supplementation from mineral sources and decreases the environmental impact of pork production through a decrease in phosphorus excretion. Superdosing phytase has been reported to boost swine productivity, improve the digestibility of other nutrients, and mitigate the antinutritional effects of phytates. However, there are significant cost differences among phytase products. Bacterial phytases are considered more modern, often with a higher cost of inclusion. A study was conducted with 288 piglets that were 21 d of age and weighed 6.43 ± 0.956 kg. Pigs were divided into four groups. Each group of pigs was fed a different experimental diet varying in phytase source and level: fungal phytase (<i>Aspergillus niger</i>) at 500 FTU/kg of diet, fungal phytase at 2,000 FTU/kg, bacterial phytase (<i>Escherichia coli</i>) at 500 FTU/kg, and bacterial phytase at 2,000 FTU/kg. No differences were found for phytase sources or doses on productivity at 14 and 21 d postweaning. However, piglets supplemented with 2,000 FTUs/kg of phytase in the diet during the first 21 d of nursery exhibited a 5.8% better feed conversion (<i>P</i> = 0.02). An interaction between phytase source and dose was observed for average live weight and daily weight gain over the 42-d nursery period (<i>P</i> < 0.05). Supplementing the diet with 2,000 FTU/kg of fungal phytase improved daily weight gain and live weight throughout the experimental period compared to piglets supplemented with 500 FTU/kg of the same phytase source. Additionally, it resulted in better final weights compared to piglets supplemented with 500 FTU/kg of bacterial phytase. Phytase inclusion at 2,000 FTU/kg improved feed conversion by 2.07% over the 42-d nursery period. The most economically favorable feed conversion ratios were observed when supplementing the diet with fungal phytase at 2,000 FTUs/kg.</p>\",\"PeriodicalId\":23272,\"journal\":{\"name\":\"Translational Animal Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439148/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/tas/txae132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txae132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Dose of phytase from either Aspergillus niger or Escherichia coli on performance of nursery piglets.
Supplementing swine diets with phytase increases phosphorus release by approximately 50% from cereal phytates. The increase in phosphorus availability allows for a reduction in dietary phosphorus supplementation from mineral sources and decreases the environmental impact of pork production through a decrease in phosphorus excretion. Superdosing phytase has been reported to boost swine productivity, improve the digestibility of other nutrients, and mitigate the antinutritional effects of phytates. However, there are significant cost differences among phytase products. Bacterial phytases are considered more modern, often with a higher cost of inclusion. A study was conducted with 288 piglets that were 21 d of age and weighed 6.43 ± 0.956 kg. Pigs were divided into four groups. Each group of pigs was fed a different experimental diet varying in phytase source and level: fungal phytase (Aspergillus niger) at 500 FTU/kg of diet, fungal phytase at 2,000 FTU/kg, bacterial phytase (Escherichia coli) at 500 FTU/kg, and bacterial phytase at 2,000 FTU/kg. No differences were found for phytase sources or doses on productivity at 14 and 21 d postweaning. However, piglets supplemented with 2,000 FTUs/kg of phytase in the diet during the first 21 d of nursery exhibited a 5.8% better feed conversion (P = 0.02). An interaction between phytase source and dose was observed for average live weight and daily weight gain over the 42-d nursery period (P < 0.05). Supplementing the diet with 2,000 FTU/kg of fungal phytase improved daily weight gain and live weight throughout the experimental period compared to piglets supplemented with 500 FTU/kg of the same phytase source. Additionally, it resulted in better final weights compared to piglets supplemented with 500 FTU/kg of bacterial phytase. Phytase inclusion at 2,000 FTU/kg improved feed conversion by 2.07% over the 42-d nursery period. The most economically favorable feed conversion ratios were observed when supplementing the diet with fungal phytase at 2,000 FTUs/kg.
期刊介绍:
Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.