Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang
{"title":"亚热带树木林间幼苗的休眠特性及其对实验升温的物候反应","authors":"Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang","doi":"10.1093/treephys/tpae124","DOIUrl":null,"url":null,"abstract":"<p><p>Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming.\",\"authors\":\"Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang\",\"doi\":\"10.1093/treephys/tpae124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpae124\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae124","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
摘要
树木的腋芽生长是指在夏末停止生长和花芽分化后新芽的额外生长。在温带树种中,林木生长不规则,通常被视为不正常的、受干扰的生长。但在亚热带树种中,林木生长是一种普遍现象,这可能是由于秋季长期高温所致。拉马斯生长现象的出现延长了树木的生长期,但它对随后的休眠现象和芽萌动物候学的影响在很大程度上仍未得到研究。通过比较出现林木生长的幼苗和未出现林木生长的幼苗,我们对四种亚热带树种进行了一项实验研究,探讨了林木生长如何在环境和受控冷冻、胁迫和升温条件下影响芽猝发表象和潜在的休眠现象:Carya illinoinensis、Cinnamomum japonicum、Phoebe chekiangensis 和 Torreya grandis。除 C. illinoinensis 外,在常温条件下,所有树种的林木生长都会延迟芽的萌发。在冷冻实验中,延迟的原因似乎是由于最低强迫要求较高、休眠深度较高,而在大叶香榧中,也是由于生长期为腊月的幼苗对冷冻的敏感性低于非腊月的幼苗。然而,春季升温实验表明,生长期乳鼠李幼苗的芽绽对春季温度的敏感性高于非生长期乳鼠李幼苗。因此,两种表型在芽绽放时间上的差异随着气候变暖而消失。我们的研究结果阐明了林木生长对亚热带树种休眠动态的重要影响,突出表明有必要更好地了解导致林木生长的生理现象如何在气候条件变化时改变树木随后的环境反应。
Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming.
Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.