[在系统综述和元分析中使用 ChatGPT]。

Q3 Nursing Journal of Nursing Pub Date : 2024-10-01 DOI:10.6224/JN.202410_71(5).04
Hsiu-Min Chen
{"title":"[在系统综述和元分析中使用 ChatGPT]。","authors":"Hsiu-Min Chen","doi":"10.6224/JN.202410_71(5).04","DOIUrl":null,"url":null,"abstract":"<p><p>The current uses, potential risks, and practical recommendations for using chat generative pre-trained transformers (ChatGPT) in systematic reviews (SRs) and meta-analyses (MAs) are reviewed in this article. The findings of prior research suggest that, for tasks such as literature screening and information extraction, ChatGPT can match or exceed the performance of human experts. However, for complex tasks such as risk of bias assessment, its performance remains significantly limited, underscoring the critical role of human expertise. The use of ChatGPT as an adjunct tool in SRs and MAs requires careful planning and the implementation of strict quality control and validation mechanisms to mitigate potential errors such as those arising from artificial intelligence (AI) 'hallucinations'. This paper also provides specific recommendations for optimizing human-AI collaboration in SRs and MAs. Assessing the specific context of each task and implementing the most appropriate strategies are critical when using ChatGPT in support of research goals. Furthermore, transparency regarding the use of ChatGPT in research reports is essential to maintaining research integrity. Close attention to ethical norms, including issues of privacy, bias, and fairness, is also imperative. Finally, from a human-centered perspective, this paper emphasizes the importance of researchers cultivating continuous self-iteration, prompt engineering skills, critical thinking, cross-disciplinary collaboration, and ethical awareness skills with the goals of: continuously optimizing human-AI collaboration models within reasonable and compliant norms, enhancing the complex-task performance of AI tools such as ChatGPT, and, ultimately, achieving greater efficiency through technological innovative while upholding scientific rigor.</p>","PeriodicalId":35672,"journal":{"name":"Journal of Nursing","volume":"71 5","pages":"21-28"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Utilizing ChatGPT in Systematic Reviews and Meta-Analyses].\",\"authors\":\"Hsiu-Min Chen\",\"doi\":\"10.6224/JN.202410_71(5).04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current uses, potential risks, and practical recommendations for using chat generative pre-trained transformers (ChatGPT) in systematic reviews (SRs) and meta-analyses (MAs) are reviewed in this article. The findings of prior research suggest that, for tasks such as literature screening and information extraction, ChatGPT can match or exceed the performance of human experts. However, for complex tasks such as risk of bias assessment, its performance remains significantly limited, underscoring the critical role of human expertise. The use of ChatGPT as an adjunct tool in SRs and MAs requires careful planning and the implementation of strict quality control and validation mechanisms to mitigate potential errors such as those arising from artificial intelligence (AI) 'hallucinations'. This paper also provides specific recommendations for optimizing human-AI collaboration in SRs and MAs. Assessing the specific context of each task and implementing the most appropriate strategies are critical when using ChatGPT in support of research goals. Furthermore, transparency regarding the use of ChatGPT in research reports is essential to maintaining research integrity. Close attention to ethical norms, including issues of privacy, bias, and fairness, is also imperative. Finally, from a human-centered perspective, this paper emphasizes the importance of researchers cultivating continuous self-iteration, prompt engineering skills, critical thinking, cross-disciplinary collaboration, and ethical awareness skills with the goals of: continuously optimizing human-AI collaboration models within reasonable and compliant norms, enhancing the complex-task performance of AI tools such as ChatGPT, and, ultimately, achieving greater efficiency through technological innovative while upholding scientific rigor.</p>\",\"PeriodicalId\":35672,\"journal\":{\"name\":\"Journal of Nursing\",\"volume\":\"71 5\",\"pages\":\"21-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nursing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6224/JN.202410_71(5).04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nursing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6224/JN.202410_71(5).04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0

摘要

本文回顾了在系统综述(SR)和荟萃分析(MA)中使用聊天生成式预训练转换器(ChatGPT)的当前用途、潜在风险和实用建议。之前的研究结果表明,对于文献筛选和信息提取等任务,聊天生成预训练转换器(ChatGPT)可以达到或超过人类专家的性能。然而,对于偏倚风险评估等复杂任务,其性能仍然受到很大限制,这凸显了人类专业知识的关键作用。将 ChatGPT 用作 SR 和 MA 的辅助工具需要仔细规划并实施严格的质量控制和验证机制,以减少人工智能(AI)"幻觉 "等潜在错误。本文还为优化员工代表和管理评审中的人机协作提出了具体建议。在使用 ChatGPT 支持研究目标时,评估每项任务的具体情况并实施最合适的策略至关重要。此外,研究报告中使用 ChatGPT 的透明度对于保持研究的完整性也至关重要。密切关注道德规范,包括隐私、偏见和公平问题,也是当务之急。最后,本文从以人为本的角度出发,强调了研究人员培养持续的自我迭代能力、及时的工程技能、批判性思维、跨学科合作和道德意识技能的重要性,其目标是:在合理和合规的规范内不断优化人与人工智能的合作模式,提高人工智能工具(如 ChatGPT)的复杂任务性能,最终在坚持科学严谨性的同时,通过技术创新实现更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Utilizing ChatGPT in Systematic Reviews and Meta-Analyses].

The current uses, potential risks, and practical recommendations for using chat generative pre-trained transformers (ChatGPT) in systematic reviews (SRs) and meta-analyses (MAs) are reviewed in this article. The findings of prior research suggest that, for tasks such as literature screening and information extraction, ChatGPT can match or exceed the performance of human experts. However, for complex tasks such as risk of bias assessment, its performance remains significantly limited, underscoring the critical role of human expertise. The use of ChatGPT as an adjunct tool in SRs and MAs requires careful planning and the implementation of strict quality control and validation mechanisms to mitigate potential errors such as those arising from artificial intelligence (AI) 'hallucinations'. This paper also provides specific recommendations for optimizing human-AI collaboration in SRs and MAs. Assessing the specific context of each task and implementing the most appropriate strategies are critical when using ChatGPT in support of research goals. Furthermore, transparency regarding the use of ChatGPT in research reports is essential to maintaining research integrity. Close attention to ethical norms, including issues of privacy, bias, and fairness, is also imperative. Finally, from a human-centered perspective, this paper emphasizes the importance of researchers cultivating continuous self-iteration, prompt engineering skills, critical thinking, cross-disciplinary collaboration, and ethical awareness skills with the goals of: continuously optimizing human-AI collaboration models within reasonable and compliant norms, enhancing the complex-task performance of AI tools such as ChatGPT, and, ultimately, achieving greater efficiency through technological innovative while upholding scientific rigor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nursing
Journal of Nursing Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
14
期刊最新文献
[A Guide to Network Meta-Analysis Using Generative AI and No-Code Tools]. [A Study on the Life Attitudes, Fear of Death, and Dying Care Abilities of Nursing Assistants in Long-Term Care Institutions]. [Analysis of the Effectiveness of a Fall Prevention Program Incorporating an Interprofessional Team Collaboration Model on Reducing Fall Risk in Elderly Living in Long-term Care Facilities]. [Application of Artificial Intelligence Models in Nursing Research]. [Caregiving Experience With a Young Father With Multiple Myeloma Undergoing Renal Dialysis and Autologous Stem Cell Transplantation].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1