激光熔覆单层氧化石墨烯增强钴铬镍锰氢氧化钾涂层的磨损特性

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2024-09-30 DOI:10.1016/j.intermet.2024.108512
Fangyan Luo , Shanshan Wang , Wenqing Shi , Zhengye Xiong , Jiang Huang
{"title":"激光熔覆单层氧化石墨烯增强钴铬镍锰氢氧化钾涂层的磨损特性","authors":"Fangyan Luo ,&nbsp;Shanshan Wang ,&nbsp;Wenqing Shi ,&nbsp;Zhengye Xiong ,&nbsp;Jiang Huang","doi":"10.1016/j.intermet.2024.108512","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene oxide (Go) has excellent mechanical properties, corrosion resistance, solid lubricant properties, and no biotoxicity. In this study, CoCrFeNiMn coating adding 2 wt% single layer of Go was prepared by laser cladding (LC) on the surface of Q235B. To explore the possibilities of Go as a reinforced powder. It was found that the alcohol stirring method could uniformly mix Go with HEA powder and would not destroy its microstructure. The main phase composition of the coatings does not change, but peaks of oxides and carbides were generated in the coatings. The carbide and oxide generation in the coating was demonstrated by EDS spot scanning. The addition of Go increased the microhardness of the coating by 51.33 %. The average coefficient of friction (COF) of the HEA/Go coating decreased by 16 %, the wear rate decreased by 82.05 %, and the wear weight loss decreased by 77.26 %. Improvement of the wear properties is mainly attributed to the generation of oxide film during friction.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108512"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear behavior of single-layer graphene oxide reinforced CoCrFeNiMn HEA coating by laser cladding\",\"authors\":\"Fangyan Luo ,&nbsp;Shanshan Wang ,&nbsp;Wenqing Shi ,&nbsp;Zhengye Xiong ,&nbsp;Jiang Huang\",\"doi\":\"10.1016/j.intermet.2024.108512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphene oxide (Go) has excellent mechanical properties, corrosion resistance, solid lubricant properties, and no biotoxicity. In this study, CoCrFeNiMn coating adding 2 wt% single layer of Go was prepared by laser cladding (LC) on the surface of Q235B. To explore the possibilities of Go as a reinforced powder. It was found that the alcohol stirring method could uniformly mix Go with HEA powder and would not destroy its microstructure. The main phase composition of the coatings does not change, but peaks of oxides and carbides were generated in the coatings. The carbide and oxide generation in the coating was demonstrated by EDS spot scanning. The addition of Go increased the microhardness of the coating by 51.33 %. The average coefficient of friction (COF) of the HEA/Go coating decreased by 16 %, the wear rate decreased by 82.05 %, and the wear weight loss decreased by 77.26 %. Improvement of the wear properties is mainly attributed to the generation of oxide film during friction.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108512\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003315\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003315","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化石墨烯(Go)具有优异的机械性能、耐腐蚀性、固体润滑剂性能和无生物毒性。本研究通过激光熔覆(LC)技术在 Q235B 表面制备了添加 2 wt% 单层 Go 的 CoCrFeNiMn 涂层。为了探索 Go 作为增强粉末的可能性。研究发现,酒精搅拌法能使 Go 与 HEA 粉末均匀混合,且不会破坏其微观结构。涂层的主要相组成没有变化,但涂层中产生了氧化物和碳化物峰。涂层中碳化物和氧化物的生成通过 EDS 点扫描得到了证实。添加 Go 后,涂层的显微硬度提高了 51.33%。HEA/Go 涂层的平均摩擦系数 (COF) 降低了 16%,磨损率降低了 82.05%,磨损失重降低了 77.26%。磨损性能的改善主要归功于摩擦过程中氧化膜的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wear behavior of single-layer graphene oxide reinforced CoCrFeNiMn HEA coating by laser cladding
Graphene oxide (Go) has excellent mechanical properties, corrosion resistance, solid lubricant properties, and no biotoxicity. In this study, CoCrFeNiMn coating adding 2 wt% single layer of Go was prepared by laser cladding (LC) on the surface of Q235B. To explore the possibilities of Go as a reinforced powder. It was found that the alcohol stirring method could uniformly mix Go with HEA powder and would not destroy its microstructure. The main phase composition of the coatings does not change, but peaks of oxides and carbides were generated in the coatings. The carbide and oxide generation in the coating was demonstrated by EDS spot scanning. The addition of Go increased the microhardness of the coating by 51.33 %. The average coefficient of friction (COF) of the HEA/Go coating decreased by 16 %, the wear rate decreased by 82.05 %, and the wear weight loss decreased by 77.26 %. Improvement of the wear properties is mainly attributed to the generation of oxide film during friction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Investigation of tribological properties of heat-treated ZrNbTiVAl high entropy alloy in dry sliding conditions Microstructure evolution and tensile properties behavior during aging temperature of CoCrFeNi-based high entropy alloys Influence of ball milling on the evolution of microstructure and microtexture in hot-press sintered cobalt alloy Improving shape memory effect in Fe-Mn-Si-based alloys by reducing annealing twin boundaries through trace boron doping The diversity of evolution behavior between stoichiometric and non-stoichiometric AlTM intermetallics in Mg melt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1