{"title":"荧光含氟材料:应用于光动力疗法和设计化学传感器的新型材料","authors":"Girish Chandra , Birkishore Mahto , Vijay Raj Singh , Gopal Kumar Mahato , Ujala Rani","doi":"10.1016/j.jphotochemrev.2024.100677","DOIUrl":null,"url":null,"abstract":"<div><div>Fluoro-organic compounds have been uninterruptedly shining since their inception in the scientific community. Their presence is indispensable in every corner of scientific research and application. Due to the inherent properties of fluorine atoms, fluorinated materials showed improved performance and higher stability. Further, perfluorinated hydrocarbons which contain many fluorinated atoms and roughly have ≥60 wt percent fluorine in the C<sub>(sp</sub><sup>3</sup><sub>)</sub>-F bond show interesting structural and photophysical properties. These are soluble in fluorous solvents, amphiphilic, exhibit non-polarizability, high gas content, and reduced molecular mobility, which makes them very special. As a result, these fluorous chemicals and solvents have been extensively used in a variety of fields. There is a continuous upsurge of interest and we have witnessed new research areas <em>viz</em>, catalysis, drug-delivery, imaging, photodynamic therapy, and chemical sensing. Due to self-aggregation properties, fluorous tagged molecules have been exploited in the production of nano and microstructures and thus open scope in different biological applications. Additionally, fluorous tags fluorophores dramatically change the photophysical properties and thus allow being used in chemical and biological sensing. Here, we have summarized the latest advancements in new fluorous materials, synthesis, photophysical properties, and emulsion formation for their use in photodynamic therapy and chemical sensing applications.</div></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"60 ","pages":"Article 100677"},"PeriodicalIF":12.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors\",\"authors\":\"Girish Chandra , Birkishore Mahto , Vijay Raj Singh , Gopal Kumar Mahato , Ujala Rani\",\"doi\":\"10.1016/j.jphotochemrev.2024.100677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluoro-organic compounds have been uninterruptedly shining since their inception in the scientific community. Their presence is indispensable in every corner of scientific research and application. Due to the inherent properties of fluorine atoms, fluorinated materials showed improved performance and higher stability. Further, perfluorinated hydrocarbons which contain many fluorinated atoms and roughly have ≥60 wt percent fluorine in the C<sub>(sp</sub><sup>3</sup><sub>)</sub>-F bond show interesting structural and photophysical properties. These are soluble in fluorous solvents, amphiphilic, exhibit non-polarizability, high gas content, and reduced molecular mobility, which makes them very special. As a result, these fluorous chemicals and solvents have been extensively used in a variety of fields. There is a continuous upsurge of interest and we have witnessed new research areas <em>viz</em>, catalysis, drug-delivery, imaging, photodynamic therapy, and chemical sensing. Due to self-aggregation properties, fluorous tagged molecules have been exploited in the production of nano and microstructures and thus open scope in different biological applications. Additionally, fluorous tags fluorophores dramatically change the photophysical properties and thus allow being used in chemical and biological sensing. Here, we have summarized the latest advancements in new fluorous materials, synthesis, photophysical properties, and emulsion formation for their use in photodynamic therapy and chemical sensing applications.</div></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"60 \",\"pages\":\"Article 100677\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556724000273\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556724000273","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors
Fluoro-organic compounds have been uninterruptedly shining since their inception in the scientific community. Their presence is indispensable in every corner of scientific research and application. Due to the inherent properties of fluorine atoms, fluorinated materials showed improved performance and higher stability. Further, perfluorinated hydrocarbons which contain many fluorinated atoms and roughly have ≥60 wt percent fluorine in the C(sp3)-F bond show interesting structural and photophysical properties. These are soluble in fluorous solvents, amphiphilic, exhibit non-polarizability, high gas content, and reduced molecular mobility, which makes them very special. As a result, these fluorous chemicals and solvents have been extensively used in a variety of fields. There is a continuous upsurge of interest and we have witnessed new research areas viz, catalysis, drug-delivery, imaging, photodynamic therapy, and chemical sensing. Due to self-aggregation properties, fluorous tagged molecules have been exploited in the production of nano and microstructures and thus open scope in different biological applications. Additionally, fluorous tags fluorophores dramatically change the photophysical properties and thus allow being used in chemical and biological sensing. Here, we have summarized the latest advancements in new fluorous materials, synthesis, photophysical properties, and emulsion formation for their use in photodynamic therapy and chemical sensing applications.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.