{"title":"分子内同位素效应对 Ca+ + HD 反应机制的影响","authors":"Di He , Wentao Li , Meishan Wang","doi":"10.1016/j.cplett.2024.141665","DOIUrl":null,"url":null,"abstract":"<div><div>The state-to-state quantum dynamics of the Ca<sup>+</sup> + HD reaction is investigated at collision energies ranging from 2.0 to 4.0 eV based on a non-adiabatic potential energy surface. The integral cross sections are calculated and compared with previous experimental results. The integral cross section of CaH<sup>+</sup> is significantly larger than that of CaD<sup>+</sup>. Additionally, the differential cross sections for CaH<sup>+</sup> and CaD<sup>+</sup> exhibit distinct trends. Rovibrationally state resolved differential cross sections reveal that the reaction for CaH<sup>+</sup> is dominated by the ‘knockout’ mechanism, while the reaction for CaD<sup>+</sup> is primarily governed by the stripping mechanism.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"856 ","pages":"Article 141665"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of intramolecular isotope effects on the reaction mechanisms of Ca+ + HD\",\"authors\":\"Di He , Wentao Li , Meishan Wang\",\"doi\":\"10.1016/j.cplett.2024.141665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The state-to-state quantum dynamics of the Ca<sup>+</sup> + HD reaction is investigated at collision energies ranging from 2.0 to 4.0 eV based on a non-adiabatic potential energy surface. The integral cross sections are calculated and compared with previous experimental results. The integral cross section of CaH<sup>+</sup> is significantly larger than that of CaD<sup>+</sup>. Additionally, the differential cross sections for CaH<sup>+</sup> and CaD<sup>+</sup> exhibit distinct trends. Rovibrationally state resolved differential cross sections reveal that the reaction for CaH<sup>+</sup> is dominated by the ‘knockout’ mechanism, while the reaction for CaD<sup>+</sup> is primarily governed by the stripping mechanism.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"856 \",\"pages\":\"Article 141665\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261424006079\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006079","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
基于非绝热势能面,研究了在碰撞能量为 2.0 至 4.0 eV 时 Ca+ + HD 反应的态对态量子动力学。计算了积分截面,并与之前的实验结果进行了比较。CaH+ 的积分截面明显大于 CaD+。此外,CaH+ 和 CaD+ 的微分截面呈现出不同的趋势。振荡态分辨微分截面显示,CaH+ 的反应由 "敲除 "机制主导,而 CaD+ 的反应主要受剥离机制支配。
The influence of intramolecular isotope effects on the reaction mechanisms of Ca+ + HD
The state-to-state quantum dynamics of the Ca+ + HD reaction is investigated at collision energies ranging from 2.0 to 4.0 eV based on a non-adiabatic potential energy surface. The integral cross sections are calculated and compared with previous experimental results. The integral cross section of CaH+ is significantly larger than that of CaD+. Additionally, the differential cross sections for CaH+ and CaD+ exhibit distinct trends. Rovibrationally state resolved differential cross sections reveal that the reaction for CaH+ is dominated by the ‘knockout’ mechanism, while the reaction for CaD+ is primarily governed by the stripping mechanism.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.