Siyuan Li , T.G. Steele , J. Ho , R. Raza , K. Williams , R.T. Kleiv
{"title":"利用荷尔德不等式和有限能QCD和则对aμHVP,LO进行约束","authors":"Siyuan Li , T.G. Steele , J. Ho , R. Raza , K. Williams , R.T. Kleiv","doi":"10.1016/j.nuclphysbps.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study establishes bounds on the leading-order (LO) hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon (<span><math><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>HVP</mi><mo>,</mo><mi>LO</mi></mrow></msubsup></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>=</mo><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub><mo>/</mo><mn>2</mn></math></span>) by using Hölder's inequality and related inequalities in Finite-Energy QCD sum rules. Considering contributions from light quarks (<span><math><mi>u</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>s</mi></math></span>) up to five-loop order in perturbation theory within the chiral limit, leading-order light-quark mass corrections, next-to-leading order for dimension-four QCD condensates, and leading-order for dimension-six QCD condensates, the study finds QCD lower and upper bounds as <span><math><mrow><mo>(</mo><mn>657.0</mn><mo>±</mo><mn>34.8</mn><mo>)</mo></mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup><mo>≤</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>HVP</mi><mo>,</mo><mi>LO</mi></mrow></msubsup><mo>≤</mo><mrow><mo>(</mo><mn>788.4</mn><mo>±</mo><mn>41.8</mn><mo>)</mo></mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":37968,"journal":{"name":"Nuclear and Particle Physics Proceedings","volume":"347 ","pages":"Pages 6-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on aμHVP,LO using Hölder's inequalities and finite-energy QCD sum rules\",\"authors\":\"Siyuan Li , T.G. Steele , J. Ho , R. Raza , K. Williams , R.T. Kleiv\",\"doi\":\"10.1016/j.nuclphysbps.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study establishes bounds on the leading-order (LO) hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon (<span><math><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>HVP</mi><mo>,</mo><mi>LO</mi></mrow></msubsup></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>=</mo><msub><mrow><mo>(</mo><mi>g</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msub><mo>/</mo><mn>2</mn></math></span>) by using Hölder's inequality and related inequalities in Finite-Energy QCD sum rules. Considering contributions from light quarks (<span><math><mi>u</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>s</mi></math></span>) up to five-loop order in perturbation theory within the chiral limit, leading-order light-quark mass corrections, next-to-leading order for dimension-four QCD condensates, and leading-order for dimension-six QCD condensates, the study finds QCD lower and upper bounds as <span><math><mrow><mo>(</mo><mn>657.0</mn><mo>±</mo><mn>34.8</mn><mo>)</mo></mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup><mo>≤</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>HVP</mi><mo>,</mo><mi>LO</mi></mrow></msubsup><mo>≤</mo><mrow><mo>(</mo><mn>788.4</mn><mo>±</mo><mn>41.8</mn><mo>)</mo></mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>10</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":37968,\"journal\":{\"name\":\"Nuclear and Particle Physics Proceedings\",\"volume\":\"347 \",\"pages\":\"Pages 6-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear and Particle Physics Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405601424001524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear and Particle Physics Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405601424001524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Bounds on aμHVP,LO using Hölder's inequalities and finite-energy QCD sum rules
This study establishes bounds on the leading-order (LO) hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon (, ) by using Hölder's inequality and related inequalities in Finite-Energy QCD sum rules. Considering contributions from light quarks () up to five-loop order in perturbation theory within the chiral limit, leading-order light-quark mass corrections, next-to-leading order for dimension-four QCD condensates, and leading-order for dimension-six QCD condensates, the study finds QCD lower and upper bounds as .
期刊介绍:
Nuclear and Particle Physics Proceedings is the premier publication outlet for the proceedings of key conferences on nuclear and high-energy physics and related areas. The series covers both large international conferences and topical meetings. The newest discoveries and the latest developments, reported at carefully selected meetings, are published covering experimental as well as theoretical particle physics, nuclear and hadronic physics, cosmology, astrophysics and gravitation, field theory and statistical systems, and physical mathematics.