Xiang Wang , Jun-Cheng Jiang , Yong-Qi Wang , Sheng-Li Chu , Fei-Hao Zhu , An-Chi Huang
{"title":"碳酸氢盐配方干水灭火剂的功效评估","authors":"Xiang Wang , Jun-Cheng Jiang , Yong-Qi Wang , Sheng-Li Chu , Fei-Hao Zhu , An-Chi Huang","doi":"10.1016/j.jlp.2024.105444","DOIUrl":null,"url":null,"abstract":"<div><div>The fire situation has gotten worse over the past few years. To put out flames, we desperately need more effective and sustainable fire extinguishing products. The primary goal of this research is to increase the dry water (DW) core-shell structure's stability and water retention—but more significantly, to increase the structure's fire extinguishing effectiveness. The following five materials are introduced in this article: dimethyl silicone oil, lauryl ether phosphate ester (AEO-3P), gelled adhesive, gallium bicarbonate (Ca(HCO<sub>3</sub>)<sub>2</sub>), and magnesium bicarbonate (Mg(HCO<sub>3</sub>)<sub>2</sub>). The water content of DW increased to 88%–94% with the addition of gel and dimethyl silicone oil, according to thermogravimetric analysis and moisture retention tests. By altering the characteristics of the liquid-solid interface between the hydrophobic silica and the aqueous solution, lauryl ether phosphate increased the stability of the DW structure. This study also examined and contrasted the effectiveness of five commercial dry powder fire extinguishing agents and DW fire extinguishing agents in terms of fire extinguishing efficiency. The findings indicate that the Mg(HCO<sub>3</sub>)<sub>2</sub> gel DW extinguishing time in n-heptane fire is the smallest (9 s), while the Ca(HCO<sub>3</sub>)<sub>2</sub> gel DW extinguishing time in anhydrous ethanol fire is the shortest (9 s). The extinguishing efficiency of the two is boosted by 66% and 55%, respectively, in comparison to commercial dry powder. By developing a new kind of stable, effective, and non-toxic fire extinguishing chemical, this work has benefited the firefighting and rescue sectors.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"92 ","pages":"Article 105444"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy evaluation of bicarbonate formulations dry water fire extinguishing agents\",\"authors\":\"Xiang Wang , Jun-Cheng Jiang , Yong-Qi Wang , Sheng-Li Chu , Fei-Hao Zhu , An-Chi Huang\",\"doi\":\"10.1016/j.jlp.2024.105444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fire situation has gotten worse over the past few years. To put out flames, we desperately need more effective and sustainable fire extinguishing products. The primary goal of this research is to increase the dry water (DW) core-shell structure's stability and water retention—but more significantly, to increase the structure's fire extinguishing effectiveness. The following five materials are introduced in this article: dimethyl silicone oil, lauryl ether phosphate ester (AEO-3P), gelled adhesive, gallium bicarbonate (Ca(HCO<sub>3</sub>)<sub>2</sub>), and magnesium bicarbonate (Mg(HCO<sub>3</sub>)<sub>2</sub>). The water content of DW increased to 88%–94% with the addition of gel and dimethyl silicone oil, according to thermogravimetric analysis and moisture retention tests. By altering the characteristics of the liquid-solid interface between the hydrophobic silica and the aqueous solution, lauryl ether phosphate increased the stability of the DW structure. This study also examined and contrasted the effectiveness of five commercial dry powder fire extinguishing agents and DW fire extinguishing agents in terms of fire extinguishing efficiency. The findings indicate that the Mg(HCO<sub>3</sub>)<sub>2</sub> gel DW extinguishing time in n-heptane fire is the smallest (9 s), while the Ca(HCO<sub>3</sub>)<sub>2</sub> gel DW extinguishing time in anhydrous ethanol fire is the shortest (9 s). The extinguishing efficiency of the two is boosted by 66% and 55%, respectively, in comparison to commercial dry powder. By developing a new kind of stable, effective, and non-toxic fire extinguishing chemical, this work has benefited the firefighting and rescue sectors.</div></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":\"92 \",\"pages\":\"Article 105444\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095042302400202X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095042302400202X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Efficacy evaluation of bicarbonate formulations dry water fire extinguishing agents
The fire situation has gotten worse over the past few years. To put out flames, we desperately need more effective and sustainable fire extinguishing products. The primary goal of this research is to increase the dry water (DW) core-shell structure's stability and water retention—but more significantly, to increase the structure's fire extinguishing effectiveness. The following five materials are introduced in this article: dimethyl silicone oil, lauryl ether phosphate ester (AEO-3P), gelled adhesive, gallium bicarbonate (Ca(HCO3)2), and magnesium bicarbonate (Mg(HCO3)2). The water content of DW increased to 88%–94% with the addition of gel and dimethyl silicone oil, according to thermogravimetric analysis and moisture retention tests. By altering the characteristics of the liquid-solid interface between the hydrophobic silica and the aqueous solution, lauryl ether phosphate increased the stability of the DW structure. This study also examined and contrasted the effectiveness of five commercial dry powder fire extinguishing agents and DW fire extinguishing agents in terms of fire extinguishing efficiency. The findings indicate that the Mg(HCO3)2 gel DW extinguishing time in n-heptane fire is the smallest (9 s), while the Ca(HCO3)2 gel DW extinguishing time in anhydrous ethanol fire is the shortest (9 s). The extinguishing efficiency of the two is boosted by 66% and 55%, respectively, in comparison to commercial dry powder. By developing a new kind of stable, effective, and non-toxic fire extinguishing chemical, this work has benefited the firefighting and rescue sectors.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.