Bor Mojškerc, Zoran Bergant, Roman Šturm, Nikola Vukašinović
{"title":"真空灌注生物环氧树脂和高压固化玻璃纤维增强聚合物复合材料齿轮与钢制小齿轮啮合时的疲劳和磨损性能","authors":"Bor Mojškerc, Zoran Bergant, Roman Šturm, Nikola Vukašinović","doi":"10.1016/j.polymertesting.2024.108600","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer composite gears are under investigation as a promising solution to mitigate the performance gap between polymer and metal gears. The study presented in this paper evaluates the fatigue and wear performance of E-glass fiber reinforced polymer composite gears. The E-glass fibers are vacuum infused with bioepoxy, followed by autoclave curing. High-speed milling is utilized to fabricate the gears, which are then subjected to testing at torques ranging from 0.5 to 0.8 Nm. Gear failure modes predominantly include wear combined with tooth edge intra-bundle fiber delamination due to fatigue, followed by extensive inter-ply delamination just prior to failure. Gear tooth wear volume demonstrates a nearly linear correlation with the number of cycles, with accelerated wear rates observed at higher torques. E-glass fiber polymer composite gears exhibit a shorter service life and a higher wear coefficient compared to our previously developed carbon fiber reinforced polymer composite gears. However, their performance remains fair, with a service life between that of PA6 GF30 and PA66 GF30 glass fiber reinforced gears.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"140 ","pages":"Article 108600"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue and wear performance of bioepoxy vacuum-infused and autoclave-cured E-glass fiber reinforced polymer composite gears in mesh with a steel pinion\",\"authors\":\"Bor Mojškerc, Zoran Bergant, Roman Šturm, Nikola Vukašinović\",\"doi\":\"10.1016/j.polymertesting.2024.108600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer composite gears are under investigation as a promising solution to mitigate the performance gap between polymer and metal gears. The study presented in this paper evaluates the fatigue and wear performance of E-glass fiber reinforced polymer composite gears. The E-glass fibers are vacuum infused with bioepoxy, followed by autoclave curing. High-speed milling is utilized to fabricate the gears, which are then subjected to testing at torques ranging from 0.5 to 0.8 Nm. Gear failure modes predominantly include wear combined with tooth edge intra-bundle fiber delamination due to fatigue, followed by extensive inter-ply delamination just prior to failure. Gear tooth wear volume demonstrates a nearly linear correlation with the number of cycles, with accelerated wear rates observed at higher torques. E-glass fiber polymer composite gears exhibit a shorter service life and a higher wear coefficient compared to our previously developed carbon fiber reinforced polymer composite gears. However, their performance remains fair, with a service life between that of PA6 GF30 and PA66 GF30 glass fiber reinforced gears.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"140 \",\"pages\":\"Article 108600\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002770\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002770","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Fatigue and wear performance of bioepoxy vacuum-infused and autoclave-cured E-glass fiber reinforced polymer composite gears in mesh with a steel pinion
Polymer composite gears are under investigation as a promising solution to mitigate the performance gap between polymer and metal gears. The study presented in this paper evaluates the fatigue and wear performance of E-glass fiber reinforced polymer composite gears. The E-glass fibers are vacuum infused with bioepoxy, followed by autoclave curing. High-speed milling is utilized to fabricate the gears, which are then subjected to testing at torques ranging from 0.5 to 0.8 Nm. Gear failure modes predominantly include wear combined with tooth edge intra-bundle fiber delamination due to fatigue, followed by extensive inter-ply delamination just prior to failure. Gear tooth wear volume demonstrates a nearly linear correlation with the number of cycles, with accelerated wear rates observed at higher torques. E-glass fiber polymer composite gears exhibit a shorter service life and a higher wear coefficient compared to our previously developed carbon fiber reinforced polymer composite gears. However, their performance remains fair, with a service life between that of PA6 GF30 and PA66 GF30 glass fiber reinforced gears.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.