用于锂金属电池的 LPEO 增强型 LAGP 复合固体电解质

Dongmei Dai , Pengyao Yan , Xinxin Zhou , Haowen Li , Zhuangzhuang Zhang , Liang Wang , Mingming Han , Xiaobing Lai , Yaru Qiao , Mengmin Jia , Bao Li , Dai-Huo Liu
{"title":"用于锂金属电池的 LPEO 增强型 LAGP 复合固体电解质","authors":"Dongmei Dai ,&nbsp;Pengyao Yan ,&nbsp;Xinxin Zhou ,&nbsp;Haowen Li ,&nbsp;Zhuangzhuang Zhang ,&nbsp;Liang Wang ,&nbsp;Mingming Han ,&nbsp;Xiaobing Lai ,&nbsp;Yaru Qiao ,&nbsp;Mengmin Jia ,&nbsp;Bao Li ,&nbsp;Dai-Huo Liu","doi":"10.1016/j.greenca.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries (LMBs). While the interfacial contact between solid inorganic electrolyte and electrodes has become a stumbling block for achieving stable cycling in LMBs. In this work, a Li-containing polyethylene oxide (LPEO) was introduced between LAGP and electrodes as a buffer layer to regulate the interfacial compatibility and reduce interfacial impedance, inhibiting the side reactions. Moreover, ether-oxygen bond on LPEO chain can coordinate with Li<sup>+</sup> and guide the transportation of Li<sup>+</sup>, achieving fast Li<sup>+</sup> diffusion between Li<sub>1+<em>x</em></sub>Al<sub><em>x</em></sub>Ge<sub>2-<em>x</em></sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP) and electrodes. Specifically, the growth of lithium dendrites is effectively suppressed in LAGP with LPEO modification, which would lead to remarkable cycling stability and rate capability. Therefore, the Li|LPEO-LAGP|Li battery can cycle stably for more than 600 h at 0.1 mA cm<sup>−2</sup>. In addition, long-term performance of Li|LPEO-LAGP| LiFePO<sub>4</sub> (LFP) battery was achieved at a rate of 0.4 C, and capacity retention is more than 74% after 200 cycles. The Li|LPEO-LAGP|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> also realized the steady operation in the voltage range of 2.8–4.3 V.</div></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"2 3","pages":"Pages 310-315"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LPEO enhanced LAGP composite solid electrolytes for lithium metal batteries\",\"authors\":\"Dongmei Dai ,&nbsp;Pengyao Yan ,&nbsp;Xinxin Zhou ,&nbsp;Haowen Li ,&nbsp;Zhuangzhuang Zhang ,&nbsp;Liang Wang ,&nbsp;Mingming Han ,&nbsp;Xiaobing Lai ,&nbsp;Yaru Qiao ,&nbsp;Mengmin Jia ,&nbsp;Bao Li ,&nbsp;Dai-Huo Liu\",\"doi\":\"10.1016/j.greenca.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries (LMBs). While the interfacial contact between solid inorganic electrolyte and electrodes has become a stumbling block for achieving stable cycling in LMBs. In this work, a Li-containing polyethylene oxide (LPEO) was introduced between LAGP and electrodes as a buffer layer to regulate the interfacial compatibility and reduce interfacial impedance, inhibiting the side reactions. Moreover, ether-oxygen bond on LPEO chain can coordinate with Li<sup>+</sup> and guide the transportation of Li<sup>+</sup>, achieving fast Li<sup>+</sup> diffusion between Li<sub>1+<em>x</em></sub>Al<sub><em>x</em></sub>Ge<sub>2-<em>x</em></sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP) and electrodes. Specifically, the growth of lithium dendrites is effectively suppressed in LAGP with LPEO modification, which would lead to remarkable cycling stability and rate capability. Therefore, the Li|LPEO-LAGP|Li battery can cycle stably for more than 600 h at 0.1 mA cm<sup>−2</sup>. In addition, long-term performance of Li|LPEO-LAGP| LiFePO<sub>4</sub> (LFP) battery was achieved at a rate of 0.4 C, and capacity retention is more than 74% after 200 cycles. The Li|LPEO-LAGP|LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> also realized the steady operation in the voltage range of 2.8–4.3 V.</div></div>\",\"PeriodicalId\":100595,\"journal\":{\"name\":\"Green Carbon\",\"volume\":\"2 3\",\"pages\":\"Pages 310-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Carbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950155524000417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950155524000417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固体电解质的应用有望实现高能量密度锂金属电池(LMB)的商业化。而固体无机电解质与电极之间的界面接触已成为实现锂金属电池稳定循环的绊脚石。在这项工作中,LAGP 和电极之间引入了含锂的聚氧化乙烯(LPEO)作为缓冲层,以调节界面相容性并降低界面阻抗,从而抑制副反应。此外,LPEO 链上的醚氧键能与 Li+ 配合,引导 Li+ 的运输,实现 Li+ 在 Li1+xAlxGe2-x(PO4)3(LAGP)和电极之间的快速扩散。具体而言,LPEO 改性的 LAGP 能有效抑制锂枝晶的生长,从而获得显著的循环稳定性和速率能力。因此,LPEO-LAGP锂电池可在0.1 mA cm-2条件下稳定循环600小时以上。此外,锂|LPEO-LAGP|磷酸铁锂(LFP)电池在 0.4 C 的速率下实现了长期性能,循环 200 次后容量保持率超过 74%。LPEO-LAGP|LiNi0.8Co0.1Mn0.1O2还实现了在2.8-4.3 V电压范围内的稳定工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LPEO enhanced LAGP composite solid electrolytes for lithium metal batteries
The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries (LMBs). While the interfacial contact between solid inorganic electrolyte and electrodes has become a stumbling block for achieving stable cycling in LMBs. In this work, a Li-containing polyethylene oxide (LPEO) was introduced between LAGP and electrodes as a buffer layer to regulate the interfacial compatibility and reduce interfacial impedance, inhibiting the side reactions. Moreover, ether-oxygen bond on LPEO chain can coordinate with Li+ and guide the transportation of Li+, achieving fast Li+ diffusion between Li1+xAlxGe2-x(PO4)3 (LAGP) and electrodes. Specifically, the growth of lithium dendrites is effectively suppressed in LAGP with LPEO modification, which would lead to remarkable cycling stability and rate capability. Therefore, the Li|LPEO-LAGP|Li battery can cycle stably for more than 600 h at 0.1 mA cm−2. In addition, long-term performance of Li|LPEO-LAGP| LiFePO4 (LFP) battery was achieved at a rate of 0.4 C, and capacity retention is more than 74% after 200 cycles. The Li|LPEO-LAGP|LiNi0.8Co0.1Mn0.1O2 also realized the steady operation in the voltage range of 2.8–4.3 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Catalyst-membrane system overcomes limitations in propane dehydrogenation Toward sustainable supply of vaccine adjuvant via synthetic biology Hexavalent iridium boosts oxygen evolution performance Interdisciplinary results of an Italian research project on methane recovery and carbon dioxide storage in natural gas hydrate reservoirs Mini review on electron mediator in artificial photosynthesis: Design, fabrication, and perspectives based on energy level matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1