纳米材料-生物混合系统:太阳能驱动的二氧化碳化学转化的进展

Wenxin Ji , Junying Liu , Chong Sha , Yang-Chun Yong , Ying Jiang , Zhen Fang
{"title":"纳米材料-生物混合系统:太阳能驱动的二氧化碳化学转化的进展","authors":"Wenxin Ji ,&nbsp;Junying Liu ,&nbsp;Chong Sha ,&nbsp;Yang-Chun Yong ,&nbsp;Ying Jiang ,&nbsp;Zhen Fang","doi":"10.1016/j.greenca.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>The nanomaterial-biological hybrid system (NBHS) is a rapidly growing interdisciplinary field that combines photocatalytic nanomaterials with biological systems, leveraging the superior light-harvesting capabilities of nanomaterials and the excellent selectivity of enzymes and microbes. This integration enables the conversion of solar energy into chemical products with high efficiency, attracting significant research interest from the fields of renewable energy and environmental science. Despite notable advances, the synergy mechanisms between abiotic nanomaterials and biotic enzymes/microbes remain unclear. This review outlines the latest progress in NBHS, encompassing material-enzyme hybrids and material-microbial hybrids, and explores design principles. Specifically, it examines the crucial role of electron transfer modes in enhancing the synergistic efficiency of nanomaterials and biological systems by analyzing various electron transfer mechanisms at the nanomaterial-biological interface. Drawing from existing literature, the review highlights the use of interfacial electron transfer mechanisms between coenzymes and cytochromes to elucidate nano/bio-material synergy. This fundamental understanding unveils opportunities to enhance biocompatible interfaces and electron transfer mechanisms, enabling non-photosensitive bacteria to harness solar energy for light-driven intracellular metabolism and CO<sub>2</sub> bio-reduction into value-added chemicals. By offering a comprehensive overview of NBHS, this review also lays the groundwork for the development of more powerful systems aimed at achieving carbon neutrality.</div></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"2 3","pages":"Pages 322-336"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterial-biological hybrid systems: Advancements in solar-driven CO2-to-chemical conversion\",\"authors\":\"Wenxin Ji ,&nbsp;Junying Liu ,&nbsp;Chong Sha ,&nbsp;Yang-Chun Yong ,&nbsp;Ying Jiang ,&nbsp;Zhen Fang\",\"doi\":\"10.1016/j.greenca.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nanomaterial-biological hybrid system (NBHS) is a rapidly growing interdisciplinary field that combines photocatalytic nanomaterials with biological systems, leveraging the superior light-harvesting capabilities of nanomaterials and the excellent selectivity of enzymes and microbes. This integration enables the conversion of solar energy into chemical products with high efficiency, attracting significant research interest from the fields of renewable energy and environmental science. Despite notable advances, the synergy mechanisms between abiotic nanomaterials and biotic enzymes/microbes remain unclear. This review outlines the latest progress in NBHS, encompassing material-enzyme hybrids and material-microbial hybrids, and explores design principles. Specifically, it examines the crucial role of electron transfer modes in enhancing the synergistic efficiency of nanomaterials and biological systems by analyzing various electron transfer mechanisms at the nanomaterial-biological interface. Drawing from existing literature, the review highlights the use of interfacial electron transfer mechanisms between coenzymes and cytochromes to elucidate nano/bio-material synergy. This fundamental understanding unveils opportunities to enhance biocompatible interfaces and electron transfer mechanisms, enabling non-photosensitive bacteria to harness solar energy for light-driven intracellular metabolism and CO<sub>2</sub> bio-reduction into value-added chemicals. By offering a comprehensive overview of NBHS, this review also lays the groundwork for the development of more powerful systems aimed at achieving carbon neutrality.</div></div>\",\"PeriodicalId\":100595,\"journal\":{\"name\":\"Green Carbon\",\"volume\":\"2 3\",\"pages\":\"Pages 322-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Carbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950155524000405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950155524000405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料-生物混合系统(NBHS)是一个快速发展的交叉学科领域,它将光催化纳米材料与生物系统相结合,充分利用了纳米材料卓越的光收集能力以及酶和微生物的优良选择性。这种整合能够高效地将太阳能转化为化学产品,吸引了可再生能源和环境科学领域的大量研究兴趣。尽管取得了显著进展,但非生物纳米材料与生物酶/微生物之间的协同机制仍不清楚。本综述概述了 NBHS 的最新进展,包括材料-酶混合物和材料-微生物混合物,并探讨了设计原理。具体而言,它通过分析纳米材料-生物界面上的各种电子传递机制,探讨了电子传递模式在提高纳米材料和生物系统协同效率方面的关键作用。根据现有文献,综述强调了利用辅酶和细胞色素之间的界面电子传递机制来阐明纳米/生物材料的协同作用。这一基本认识揭示了增强生物相容性界面和电子传递机制的机会,使非光敏细菌能够利用太阳能进行光驱动的细胞内新陈代谢,并将二氧化碳生物还原成高附加值的化学品。通过对 NBHS 的全面概述,本综述还为开发旨在实现碳中和的更强大系统奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanomaterial-biological hybrid systems: Advancements in solar-driven CO2-to-chemical conversion
The nanomaterial-biological hybrid system (NBHS) is a rapidly growing interdisciplinary field that combines photocatalytic nanomaterials with biological systems, leveraging the superior light-harvesting capabilities of nanomaterials and the excellent selectivity of enzymes and microbes. This integration enables the conversion of solar energy into chemical products with high efficiency, attracting significant research interest from the fields of renewable energy and environmental science. Despite notable advances, the synergy mechanisms between abiotic nanomaterials and biotic enzymes/microbes remain unclear. This review outlines the latest progress in NBHS, encompassing material-enzyme hybrids and material-microbial hybrids, and explores design principles. Specifically, it examines the crucial role of electron transfer modes in enhancing the synergistic efficiency of nanomaterials and biological systems by analyzing various electron transfer mechanisms at the nanomaterial-biological interface. Drawing from existing literature, the review highlights the use of interfacial electron transfer mechanisms between coenzymes and cytochromes to elucidate nano/bio-material synergy. This fundamental understanding unveils opportunities to enhance biocompatible interfaces and electron transfer mechanisms, enabling non-photosensitive bacteria to harness solar energy for light-driven intracellular metabolism and CO2 bio-reduction into value-added chemicals. By offering a comprehensive overview of NBHS, this review also lays the groundwork for the development of more powerful systems aimed at achieving carbon neutrality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Catalyst-membrane system overcomes limitations in propane dehydrogenation Toward sustainable supply of vaccine adjuvant via synthetic biology Hexavalent iridium boosts oxygen evolution performance Interdisciplinary results of an Italian research project on methane recovery and carbon dioxide storage in natural gas hydrate reservoirs Mini review on electron mediator in artificial photosynthesis: Design, fabrication, and perspectives based on energy level matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1