Rasel Islam, M. Abul Kawser, M. Sohel Rana, M. Nurul Islam
{"title":"用广义指数有理函数法对时空分数克莱因-戈登模型中的孤子解进行数学分析","authors":"Rasel Islam, M. Abul Kawser, M. Sohel Rana, M. Nurul Islam","doi":"10.1016/j.padiff.2024.100942","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate the space-time Klein-Gordon (KG) model, a significant framework in quantum field theory and quantum mechanics, which also describes phenomena such as wave propagation in crystal dislocations. This model is particularly important in high-energy particle physics. The novelty of this article is to examine the sufficient, useful in optical fibers, and further general soliton solutions of the nonlinear KG model using the generalized exponential rational function method (GERFM), which do not exist in the recent literature. The fractional complex wave transformation is utilized to turn the model into a nonlinear form, and the accuracy of the acquired solutions is confirmed by reintroducing them into the original models using Mathematica. The obtained solutions are expressed in hyperbolic, exponential, rational, and trigonometric forms. We elucidate the fractional effects for specific parameter values, accompanied by illustrative figures. Our results demonstrate that GERFM is effective, powerful, and versatile, providing exact traveling wave solutions for various nonlinear models in engineering and mathematical physics. Our findings reveal that the characteristics of soliton-shaped waves in both three-dimensional and two-dimensional contexts are profoundly influenced by fractional order derivative. This study advances the understanding of nonlinear wave dynamics and offers a robust method for solving complex physical models.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100942"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of soliton solutions in space-time fractional Klein-Gordon model with generalized exponential rational function method\",\"authors\":\"Rasel Islam, M. Abul Kawser, M. Sohel Rana, M. Nurul Islam\",\"doi\":\"10.1016/j.padiff.2024.100942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we investigate the space-time Klein-Gordon (KG) model, a significant framework in quantum field theory and quantum mechanics, which also describes phenomena such as wave propagation in crystal dislocations. This model is particularly important in high-energy particle physics. The novelty of this article is to examine the sufficient, useful in optical fibers, and further general soliton solutions of the nonlinear KG model using the generalized exponential rational function method (GERFM), which do not exist in the recent literature. The fractional complex wave transformation is utilized to turn the model into a nonlinear form, and the accuracy of the acquired solutions is confirmed by reintroducing them into the original models using Mathematica. The obtained solutions are expressed in hyperbolic, exponential, rational, and trigonometric forms. We elucidate the fractional effects for specific parameter values, accompanied by illustrative figures. Our results demonstrate that GERFM is effective, powerful, and versatile, providing exact traveling wave solutions for various nonlinear models in engineering and mathematical physics. Our findings reveal that the characteristics of soliton-shaped waves in both three-dimensional and two-dimensional contexts are profoundly influenced by fractional order derivative. This study advances the understanding of nonlinear wave dynamics and offers a robust method for solving complex physical models.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100942\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们研究了时空克莱因-戈登(KG)模型,它是量子场论和量子力学的一个重要框架,也描述了晶体位错中的波传播等现象。该模型在高能粒子物理学中尤为重要。本文的新颖之处在于利用广义指数有理函数法(GERFM)研究了非线性 KG 模型的充分解、光纤中的有用解以及进一步的一般孤子解,而这些解在最近的文献中并不存在。利用分数复波变换将模型转化为非线性形式,并通过使用 Mathematica 将获得的解重新引入原始模型来确认其准确性。获得的解以双曲、指数、有理和三角形式表示。我们阐明了特定参数值的分数效应,并附有说明性数字。我们的研究结果表明,GERFM 有效、强大且用途广泛,能为工程和数学物理中的各种非线性模型提供精确的行波解。我们的研究结果表明,孤子形波在三维和二维环境中的特性深受分数阶导数的影响。这项研究加深了人们对非线性波动力学的理解,并为复杂物理模型的求解提供了一种稳健的方法。
Mathematical analysis of soliton solutions in space-time fractional Klein-Gordon model with generalized exponential rational function method
In this article, we investigate the space-time Klein-Gordon (KG) model, a significant framework in quantum field theory and quantum mechanics, which also describes phenomena such as wave propagation in crystal dislocations. This model is particularly important in high-energy particle physics. The novelty of this article is to examine the sufficient, useful in optical fibers, and further general soliton solutions of the nonlinear KG model using the generalized exponential rational function method (GERFM), which do not exist in the recent literature. The fractional complex wave transformation is utilized to turn the model into a nonlinear form, and the accuracy of the acquired solutions is confirmed by reintroducing them into the original models using Mathematica. The obtained solutions are expressed in hyperbolic, exponential, rational, and trigonometric forms. We elucidate the fractional effects for specific parameter values, accompanied by illustrative figures. Our results demonstrate that GERFM is effective, powerful, and versatile, providing exact traveling wave solutions for various nonlinear models in engineering and mathematical physics. Our findings reveal that the characteristics of soliton-shaped waves in both three-dimensional and two-dimensional contexts are profoundly influenced by fractional order derivative. This study advances the understanding of nonlinear wave dynamics and offers a robust method for solving complex physical models.