生产规模对甘蔗生物精炼厂乳酸生产的技术经济可行性和环境生命周期分析的影响

IF 3.5 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food and Bioproducts Processing Pub Date : 2024-09-27 DOI:10.1016/j.fbp.2024.09.020
{"title":"生产规模对甘蔗生物精炼厂乳酸生产的技术经济可行性和环境生命周期分析的影响","authors":"","doi":"10.1016/j.fbp.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>Biorefineries are vital for advancing circular economy and reducing the effects of products fossil fuels derived products on the environment. However, biorefineries often operate at smaller production scales than fossil refineries due to limited feedstock availability, which may be addressed by centralised processing with multiple feedstock sources. Lactic acid (LA) has several industrial applications and is a platform chemical used to produce products like acrylic acid and propylene glycol. The economic and environmental performances of an integrated biorefinery at different production scales, through different levels of feedstock centralization, were investigated, to determine the optimal scale for sugarcane-based LA production. Decreasing values for the minimum selling price (MSP; 1312–849 US$.t<sup>−1</sup>) and increasing internal rates of return (IRRs; 31–64 %) were observed with increasing conversion scales of sugarcane A-molasses. The MSPs decrease from 90 to 450 kt<sub>LA</sub>.y<sup>−1</sup> with small improvements in profitability beyond 450 kt<sub>LA</sub>.y<sup>−1</sup>, as confirmed by stochastic financial uncertainty analysis. In the environmental assessment, a linear increase was observed across all impact categories, mainly due to the added fuel consumption for feedstock transportation. LA production had a GWP100 range of 0.87–0.95 kg CO<sub>2</sub>-eq.kg<sub>LA</sub><sup>−1</sup> and an abiotic depletion potential of 12–13 MJ.kg<sub>LA</sub><sup>−1</sup> which increased as the scale increased. In the ozone depletion category emissions of 9.96×10<sup>−8</sup>-1.13×10<sup>−7</sup> kg CFC-11 eq.kg<sub>LA</sub><sup>−1</sup> comparable to other studies available in literature. Similarly, emission ranges of 1.11–1.17, 0.63–0.66, and 1581–1641 kg 1,4-DB eq.kg<sub>LA</sub><sup>−1</sup> were obtained in the human toxicity, freshwater and marine aquatic ecotoxicity categories as the scale increased. Environmentally the smallest scale at which transportation of feedstock was avoided (i.e. 90 kt<sub>LA</sub>.y<sup>−1</sup>) is preferred as opposed to 450 kt<sub>LA</sub>.y<sup>−1</sup> for economic performance.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of production scale on the techno-economic viability and environmental life cycle analysis of lactic acid production in a sugarcane biorefinery\",\"authors\":\"\",\"doi\":\"10.1016/j.fbp.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biorefineries are vital for advancing circular economy and reducing the effects of products fossil fuels derived products on the environment. However, biorefineries often operate at smaller production scales than fossil refineries due to limited feedstock availability, which may be addressed by centralised processing with multiple feedstock sources. Lactic acid (LA) has several industrial applications and is a platform chemical used to produce products like acrylic acid and propylene glycol. The economic and environmental performances of an integrated biorefinery at different production scales, through different levels of feedstock centralization, were investigated, to determine the optimal scale for sugarcane-based LA production. Decreasing values for the minimum selling price (MSP; 1312–849 US$.t<sup>−1</sup>) and increasing internal rates of return (IRRs; 31–64 %) were observed with increasing conversion scales of sugarcane A-molasses. The MSPs decrease from 90 to 450 kt<sub>LA</sub>.y<sup>−1</sup> with small improvements in profitability beyond 450 kt<sub>LA</sub>.y<sup>−1</sup>, as confirmed by stochastic financial uncertainty analysis. In the environmental assessment, a linear increase was observed across all impact categories, mainly due to the added fuel consumption for feedstock transportation. LA production had a GWP100 range of 0.87–0.95 kg CO<sub>2</sub>-eq.kg<sub>LA</sub><sup>−1</sup> and an abiotic depletion potential of 12–13 MJ.kg<sub>LA</sub><sup>−1</sup> which increased as the scale increased. In the ozone depletion category emissions of 9.96×10<sup>−8</sup>-1.13×10<sup>−7</sup> kg CFC-11 eq.kg<sub>LA</sub><sup>−1</sup> comparable to other studies available in literature. Similarly, emission ranges of 1.11–1.17, 0.63–0.66, and 1581–1641 kg 1,4-DB eq.kg<sub>LA</sub><sup>−1</sup> were obtained in the human toxicity, freshwater and marine aquatic ecotoxicity categories as the scale increased. Environmentally the smallest scale at which transportation of feedstock was avoided (i.e. 90 kt<sub>LA</sub>.y<sup>−1</sup>) is preferred as opposed to 450 kt<sub>LA</sub>.y<sup>−1</sup> for economic performance.</div></div>\",\"PeriodicalId\":12134,\"journal\":{\"name\":\"Food and Bioproducts Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioproducts Processing\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960308524001974\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524001974","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物精炼厂对于推进循环经济和减少化石燃料衍生产品对环境的影响至关重要。然而,由于原料供应有限,生物精炼厂的生产规模往往小于化石精炼厂,这可以通过多种原料来源的集中加工来解决。乳酸(LA)有多种工业用途,是一种用于生产丙烯酸和丙二醇等产品的平台化学品。通过不同程度的原料集中化,研究了不同生产规模的综合生物精炼厂的经济和环境性能,以确定以甘蔗为原料的 LA 生产的最佳规模。随着甘蔗 A-蔗糖转化规模的扩大,最低销售价格(MSP;1312-849 美元/吨-1)不断降低,内部收益率(IRR;31-64%)不断提高。随机财务不确定性分析证实,从 90 ktLA.y-1 到 450 ktLA.y-1,最大生产潜力下降,超过 450 ktLA.y-1 后盈利能力略有提高。在环境评估中,所有影响类别都呈线性增长,这主要是由于原料运输增加了燃料消耗。LA 生产的 GWP100 范围为 0.87-0.95 kg CO2-eq.kgLA-1,非生物消耗潜能值为 12-13 MJ.kgLA-1,随着规模的扩大而增加。臭氧消耗类的排放量为 9.96×10-8-1.13×10-7 kg CFC-11eq.kgLA-1,与文献中的其他研究结果相当。同样,随着规模的增加,在人类毒性、淡水和海洋水生生态毒性类别中,排放范围分别为 1.11-1.17、0.63-0.66 和 1581-1641 kg 1,4-DB eq.kgLA-1。从环境角度看,避免原料运输的最小规模(即 90 ktLA.y-1)比 450 ktLA.y-1 更符合经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of production scale on the techno-economic viability and environmental life cycle analysis of lactic acid production in a sugarcane biorefinery
Biorefineries are vital for advancing circular economy and reducing the effects of products fossil fuels derived products on the environment. However, biorefineries often operate at smaller production scales than fossil refineries due to limited feedstock availability, which may be addressed by centralised processing with multiple feedstock sources. Lactic acid (LA) has several industrial applications and is a platform chemical used to produce products like acrylic acid and propylene glycol. The economic and environmental performances of an integrated biorefinery at different production scales, through different levels of feedstock centralization, were investigated, to determine the optimal scale for sugarcane-based LA production. Decreasing values for the minimum selling price (MSP; 1312–849 US$.t−1) and increasing internal rates of return (IRRs; 31–64 %) were observed with increasing conversion scales of sugarcane A-molasses. The MSPs decrease from 90 to 450 ktLA.y−1 with small improvements in profitability beyond 450 ktLA.y−1, as confirmed by stochastic financial uncertainty analysis. In the environmental assessment, a linear increase was observed across all impact categories, mainly due to the added fuel consumption for feedstock transportation. LA production had a GWP100 range of 0.87–0.95 kg CO2-eq.kgLA−1 and an abiotic depletion potential of 12–13 MJ.kgLA−1 which increased as the scale increased. In the ozone depletion category emissions of 9.96×10−8-1.13×10−7 kg CFC-11 eq.kgLA−1 comparable to other studies available in literature. Similarly, emission ranges of 1.11–1.17, 0.63–0.66, and 1581–1641 kg 1,4-DB eq.kgLA−1 were obtained in the human toxicity, freshwater and marine aquatic ecotoxicity categories as the scale increased. Environmentally the smallest scale at which transportation of feedstock was avoided (i.e. 90 ktLA.y−1) is preferred as opposed to 450 ktLA.y−1 for economic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Bioproducts Processing
Food and Bioproducts Processing 工程技术-工程:化工
CiteScore
9.70
自引率
4.30%
发文量
115
审稿时长
24 days
期刊介绍: Official Journal of the European Federation of Chemical Engineering: Part C FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering. Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing. The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those: • Primarily concerned with food formulation • That use experimental design techniques to obtain response surfaces but gain little insight from them • That are empirical and ignore established mechanistic models, e.g., empirical drying curves • That are primarily concerned about sensory evaluation and colour • Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material, • Containing only chemical analyses of biological materials.
期刊最新文献
Synthesis, characterization, and evaluation of antibacterial properties of silver/ carboxymethyl cellulose/ bacterial cellulose/ Clitoria ternatea extract aerogel composites Freeze, spray, and vacuum dried Camelina sativa protein powders and their physicochemical and functional properties Exploring solution composition and vacuum pulse effects in the osmotic processing of sole (Paralichthys sp.) fillets Nanoencapsulation of Spirulina sp. LEB 18 microalgae biomass using electrospray technique and application in chocolate milk Construction and characteristics of EGCG-porcine serum albumin pickering emulsion: Based on noncovalent interactions mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1