Kai Wu , Qingshan Meng , Hongya Li , Jiajun Deng , Haifeng Liu , Chi Wang , Le Luo , Tianli Shen
{"title":"从动态载荷下深层珊瑚礁石灰岩的拉伸断裂特性和全场应变演变中窥见一斑","authors":"Kai Wu , Qingshan Meng , Hongya Li , Jiajun Deng , Haifeng Liu , Chi Wang , Le Luo , Tianli Shen","doi":"10.1016/j.enggeo.2024.107738","DOIUrl":null,"url":null,"abstract":"<div><div>Coral reef limestone (CRL) commonly undergoes dynamic tension when underground structures of island reefs encounter impacts, explosions, or seismic activities. Given the complexity of biological pores, the dynamic tensile fracture characteristics of CRL are poorly understood. Therefore, the dynamic tensile fracture behaviors of deep CRL were systematically observed by Split Hopkinson Pressure Bar tests and digital image techniques. Comparing to traditional rocks, the macro-pores near failure band would significantly change cracking path. The failure patterns are dominated by loading rate. The strongly dependence of dynamic tensile strength and dynamic crack initiation toughness on loading rate suggests the two indices overcome the effect of CRL macro-pores under dynamic impacts. At low loading rates, tensile fractures predominantly follow intergranular cracks, whereas transgranular cracks dominate at higher rates. The fractal dimension of fracture surface decreases with increasing crack propagation velocity, loading rate, and dynamic crack initiation toughness. Due to the unique marine sedimentary environment, the mechanical heterogeneity in multiple scales distinguishes CRL from terrestrial rock materials. The insights into underlying mechanisms of dynamic tension provide support to optimization of blasting scheme and stability assessments for island underground engineering.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"341 ","pages":"Article 107738"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights from tensile fracture properties and full-field strain evolution of deep coral reef limestone under dynamic loads\",\"authors\":\"Kai Wu , Qingshan Meng , Hongya Li , Jiajun Deng , Haifeng Liu , Chi Wang , Le Luo , Tianli Shen\",\"doi\":\"10.1016/j.enggeo.2024.107738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coral reef limestone (CRL) commonly undergoes dynamic tension when underground structures of island reefs encounter impacts, explosions, or seismic activities. Given the complexity of biological pores, the dynamic tensile fracture characteristics of CRL are poorly understood. Therefore, the dynamic tensile fracture behaviors of deep CRL were systematically observed by Split Hopkinson Pressure Bar tests and digital image techniques. Comparing to traditional rocks, the macro-pores near failure band would significantly change cracking path. The failure patterns are dominated by loading rate. The strongly dependence of dynamic tensile strength and dynamic crack initiation toughness on loading rate suggests the two indices overcome the effect of CRL macro-pores under dynamic impacts. At low loading rates, tensile fractures predominantly follow intergranular cracks, whereas transgranular cracks dominate at higher rates. The fractal dimension of fracture surface decreases with increasing crack propagation velocity, loading rate, and dynamic crack initiation toughness. Due to the unique marine sedimentary environment, the mechanical heterogeneity in multiple scales distinguishes CRL from terrestrial rock materials. The insights into underlying mechanisms of dynamic tension provide support to optimization of blasting scheme and stability assessments for island underground engineering.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"341 \",\"pages\":\"Article 107738\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224003387\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003387","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Insights from tensile fracture properties and full-field strain evolution of deep coral reef limestone under dynamic loads
Coral reef limestone (CRL) commonly undergoes dynamic tension when underground structures of island reefs encounter impacts, explosions, or seismic activities. Given the complexity of biological pores, the dynamic tensile fracture characteristics of CRL are poorly understood. Therefore, the dynamic tensile fracture behaviors of deep CRL were systematically observed by Split Hopkinson Pressure Bar tests and digital image techniques. Comparing to traditional rocks, the macro-pores near failure band would significantly change cracking path. The failure patterns are dominated by loading rate. The strongly dependence of dynamic tensile strength and dynamic crack initiation toughness on loading rate suggests the two indices overcome the effect of CRL macro-pores under dynamic impacts. At low loading rates, tensile fractures predominantly follow intergranular cracks, whereas transgranular cracks dominate at higher rates. The fractal dimension of fracture surface decreases with increasing crack propagation velocity, loading rate, and dynamic crack initiation toughness. Due to the unique marine sedimentary environment, the mechanical heterogeneity in multiple scales distinguishes CRL from terrestrial rock materials. The insights into underlying mechanisms of dynamic tension provide support to optimization of blasting scheme and stability assessments for island underground engineering.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.