Lucy E. Wilson , Thomas T.C. Yue , Michael S. Inkpen , Iain Grace , Andrew J.P. White , Colin Lambert , Tim Albrecht , Nicholas J. Long
{"title":"控制氧化还原活性环中的量子干涉模式","authors":"Lucy E. Wilson , Thomas T.C. Yue , Michael S. Inkpen , Iain Grace , Andrew J.P. White , Colin Lambert , Tim Albrecht , Nicholas J. Long","doi":"10.1016/j.jorganchem.2024.123368","DOIUrl":null,"url":null,"abstract":"<div><div>The ability to create molecules, which exhibit tunable and unique conductive properties is a key requirement for the development of future generation devices. Towards this concept, we herein report synthetic routes to novel linear, branched, and cyclic Ru(1,2-bis(diphenylphosphino)ethane)<sub>2</sub>-containing molecules, including the variation of surface binding groups. Synthetic strategies are discussed followed by a discussion of the electrochemical properties of the molecules. Theoretical calculations suggest that cyclic derivatives exhibit higher conductance compared to their linear counterparts due to quantum interference effects. Additionally, the conductance of both linear and cyclic molecules can vary depending on their orientation.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1022 ","pages":"Article 123368"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling quantum interference patterns in redox-active rings\",\"authors\":\"Lucy E. Wilson , Thomas T.C. Yue , Michael S. Inkpen , Iain Grace , Andrew J.P. White , Colin Lambert , Tim Albrecht , Nicholas J. Long\",\"doi\":\"10.1016/j.jorganchem.2024.123368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ability to create molecules, which exhibit tunable and unique conductive properties is a key requirement for the development of future generation devices. Towards this concept, we herein report synthetic routes to novel linear, branched, and cyclic Ru(1,2-bis(diphenylphosphino)ethane)<sub>2</sub>-containing molecules, including the variation of surface binding groups. Synthetic strategies are discussed followed by a discussion of the electrochemical properties of the molecules. Theoretical calculations suggest that cyclic derivatives exhibit higher conductance compared to their linear counterparts due to quantum interference effects. Additionally, the conductance of both linear and cyclic molecules can vary depending on their orientation.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1022 \",\"pages\":\"Article 123368\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X24003632\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24003632","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Controlling quantum interference patterns in redox-active rings
The ability to create molecules, which exhibit tunable and unique conductive properties is a key requirement for the development of future generation devices. Towards this concept, we herein report synthetic routes to novel linear, branched, and cyclic Ru(1,2-bis(diphenylphosphino)ethane)2-containing molecules, including the variation of surface binding groups. Synthetic strategies are discussed followed by a discussion of the electrochemical properties of the molecules. Theoretical calculations suggest that cyclic derivatives exhibit higher conductance compared to their linear counterparts due to quantum interference effects. Additionally, the conductance of both linear and cyclic molecules can vary depending on their orientation.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.