{"title":"基于范围的 GARCH 模型的稳健估算:预测加密货币的波动率、风险价值和预期缺口","authors":"Piotr Fiszeder , Marta Małecka , Peter Molnár","doi":"10.1016/j.econmod.2024.106887","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional volatility models do not work well when volatility changes rapidly and in the presence of outliers. Therefore, two lines of improvements have been developed separately in the existing literature. Range-based models benefit from efficient volatility estimates based on low and high prices, while robust methods deal with outliers. We propose a range-based GARCH model with a bounded M-estimator, which combines these two improvements with a third new improvement: a modified robust method, which adds elasticity in treating the outliers. We apply this model to Bitcoin, Ethereum Classic, Ethereum, and Litecoin and find that it forecasts variances, value at risk, and expected shortfall more accurately than the standard GARCH model, the standard range-based GARCH model, and the GARCH model with the robust estimation. Utilization of high and low prices joined with a novel treatment of outliers makes our model perform well during extreme periods when traditional volatility models fail.</div></div>","PeriodicalId":48419,"journal":{"name":"Economic Modelling","volume":"141 ","pages":"Article 106887"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation of the range-based GARCH model: Forecasting volatility, value at risk and expected shortfall of cryptocurrencies\",\"authors\":\"Piotr Fiszeder , Marta Małecka , Peter Molnár\",\"doi\":\"10.1016/j.econmod.2024.106887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional volatility models do not work well when volatility changes rapidly and in the presence of outliers. Therefore, two lines of improvements have been developed separately in the existing literature. Range-based models benefit from efficient volatility estimates based on low and high prices, while robust methods deal with outliers. We propose a range-based GARCH model with a bounded M-estimator, which combines these two improvements with a third new improvement: a modified robust method, which adds elasticity in treating the outliers. We apply this model to Bitcoin, Ethereum Classic, Ethereum, and Litecoin and find that it forecasts variances, value at risk, and expected shortfall more accurately than the standard GARCH model, the standard range-based GARCH model, and the GARCH model with the robust estimation. Utilization of high and low prices joined with a novel treatment of outliers makes our model perform well during extreme periods when traditional volatility models fail.</div></div>\",\"PeriodicalId\":48419,\"journal\":{\"name\":\"Economic Modelling\",\"volume\":\"141 \",\"pages\":\"Article 106887\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026499932400244X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026499932400244X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Robust estimation of the range-based GARCH model: Forecasting volatility, value at risk and expected shortfall of cryptocurrencies
Traditional volatility models do not work well when volatility changes rapidly and in the presence of outliers. Therefore, two lines of improvements have been developed separately in the existing literature. Range-based models benefit from efficient volatility estimates based on low and high prices, while robust methods deal with outliers. We propose a range-based GARCH model with a bounded M-estimator, which combines these two improvements with a third new improvement: a modified robust method, which adds elasticity in treating the outliers. We apply this model to Bitcoin, Ethereum Classic, Ethereum, and Litecoin and find that it forecasts variances, value at risk, and expected shortfall more accurately than the standard GARCH model, the standard range-based GARCH model, and the GARCH model with the robust estimation. Utilization of high and low prices joined with a novel treatment of outliers makes our model perform well during extreme periods when traditional volatility models fail.
期刊介绍:
Economic Modelling fills a major gap in the economics literature, providing a single source of both theoretical and applied papers on economic modelling. The journal prime objective is to provide an international review of the state-of-the-art in economic modelling. Economic Modelling publishes the complete versions of many large-scale models of industrially advanced economies which have been developed for policy analysis. Examples are the Bank of England Model and the US Federal Reserve Board Model which had hitherto been unpublished. As individual models are revised and updated, the journal publishes subsequent papers dealing with these revisions, so keeping its readers as up to date as possible.