What-if:以控制为导向的建筑热动态建模的因果机器学习方法

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-09-28 DOI:10.1016/j.apenergy.2024.124550
{"title":"What-if:以控制为导向的建筑热动态建模的因果机器学习方法","authors":"","doi":"10.1016/j.apenergy.2024.124550","DOIUrl":null,"url":null,"abstract":"<div><div>Operational optimization of buildings can improve efficiency, and reduce costs and emissions. This optimization typically relies on a model of the building thermal dynamics, which is used by a predictive controller to obtain optimal schedules for heating, ventilation and air conditioning. This model has historically been constructed by domain experts using physical properties of the building. However, this approach scales poorly as more and more residential and commercial buildings need to be modelled and controlled. As a consequence, researchers and practitioners have turned to data-driven models, trained only on observational data. However, this alternative is no panacea: such models often fail to generalize to truly unseen conditions due to their inability to learn cause–effect relationships - i.e. they are not causal, rather they only learn correlational associations between input and target variables. In this paper, we demonstrate this problem using classical machine learning models trained on data from two different use cases (a simulated RC building and nine real-world Dutch buildings). Our results show that, unlike commonly used data-driven methods, causal machine learning (CML) algorithms trained on debiased data can produce accurate models necessary for control-oriented applications which outperform baseline models by over 40%, besides learning the correct causal associations which we verify using a custom testing environment as well as SHAP feature analysis. These results emphasize the need to move beyond simplistic data-driven methods if control-oriented applications are to be realized in a feasible manner.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What-if: A causal machine learning approach to control-oriented modelling for building thermal dynamics\",\"authors\":\"\",\"doi\":\"10.1016/j.apenergy.2024.124550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Operational optimization of buildings can improve efficiency, and reduce costs and emissions. This optimization typically relies on a model of the building thermal dynamics, which is used by a predictive controller to obtain optimal schedules for heating, ventilation and air conditioning. This model has historically been constructed by domain experts using physical properties of the building. However, this approach scales poorly as more and more residential and commercial buildings need to be modelled and controlled. As a consequence, researchers and practitioners have turned to data-driven models, trained only on observational data. However, this alternative is no panacea: such models often fail to generalize to truly unseen conditions due to their inability to learn cause–effect relationships - i.e. they are not causal, rather they only learn correlational associations between input and target variables. In this paper, we demonstrate this problem using classical machine learning models trained on data from two different use cases (a simulated RC building and nine real-world Dutch buildings). Our results show that, unlike commonly used data-driven methods, causal machine learning (CML) algorithms trained on debiased data can produce accurate models necessary for control-oriented applications which outperform baseline models by over 40%, besides learning the correct causal associations which we verify using a custom testing environment as well as SHAP feature analysis. These results emphasize the need to move beyond simplistic data-driven methods if control-oriented applications are to be realized in a feasible manner.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924019330\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924019330","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

建筑物的运行优化可以提高效率,降低成本和排放。这种优化通常依赖于建筑物热动态模型,预测控制器利用该模型来获得供暖、通风和空调的最佳时间表。该模型历来由领域专家利用建筑物的物理特性构建。然而,随着越来越多的住宅和商业建筑需要建模和控制,这种方法的扩展性越来越差。因此,研究人员和从业人员转而采用数据驱动模型,仅根据观测数据进行训练。然而,这种替代方法并不是万能的:由于无法学习因果关系,这类模型往往无法推广到真正未知的条件下,也就是说,它们并不是因果关系,而只是学习输入变量和目标变量之间的相关联系。在本文中,我们使用在两个不同使用案例(一个模拟 RC 建筑和九个真实世界中的荷兰建筑)的数据上训练的经典机器学习模型来证明这个问题。我们的结果表明,与常用的数据驱动方法不同,在去偏差数据上训练的因果机器学习(CML)算法可以生成控制型应用所需的精确模型,其性能比基线模型高出 40% 以上,此外还能学习正确的因果关联,我们使用自定义测试环境和 SHAP 特征分析验证了这一点。这些结果表明,如果要以可行的方式实现面向控制的应用,就必须超越简单的数据驱动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What-if: A causal machine learning approach to control-oriented modelling for building thermal dynamics
Operational optimization of buildings can improve efficiency, and reduce costs and emissions. This optimization typically relies on a model of the building thermal dynamics, which is used by a predictive controller to obtain optimal schedules for heating, ventilation and air conditioning. This model has historically been constructed by domain experts using physical properties of the building. However, this approach scales poorly as more and more residential and commercial buildings need to be modelled and controlled. As a consequence, researchers and practitioners have turned to data-driven models, trained only on observational data. However, this alternative is no panacea: such models often fail to generalize to truly unseen conditions due to their inability to learn cause–effect relationships - i.e. they are not causal, rather they only learn correlational associations between input and target variables. In this paper, we demonstrate this problem using classical machine learning models trained on data from two different use cases (a simulated RC building and nine real-world Dutch buildings). Our results show that, unlike commonly used data-driven methods, causal machine learning (CML) algorithms trained on debiased data can produce accurate models necessary for control-oriented applications which outperform baseline models by over 40%, besides learning the correct causal associations which we verify using a custom testing environment as well as SHAP feature analysis. These results emphasize the need to move beyond simplistic data-driven methods if control-oriented applications are to be realized in a feasible manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Attention enhanced dual stream network with advanced feature selection for power forecasting Characterization by key performance indicators of SFERA-III project to ALTAYR packed-bed prototype From lab to industry: Scaling-up Fe-Ni bimetallic nano oxygen carrier for mid-temperature methane chemical looping reforming Optimal cost predictive BMS considering greywater recycling, responsive HVAC, and energy storage Electrifying the bus network with trolleybus: Analyzing the in motion charging technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1