Yajie Li , Ou Wang , Yuyao Zhang , Weikang Kong , Nana Cheng , Salma Tabassum , Hongbo Liu
{"title":"高级氧化强化微生物电解池与厌氧消化相结合:煤气化废水处理的新方法","authors":"Yajie Li , Ou Wang , Yuyao Zhang , Weikang Kong , Nana Cheng , Salma Tabassum , Hongbo Liu","doi":"10.1016/j.bej.2024.109512","DOIUrl":null,"url":null,"abstract":"<div><div>Coal gasification wastewater (CGW) contains a range of refractory and toxic organic pollutants with low biodegradability and significant biological toxicity. This study synthesized a hemin-graphene (H-graphene) catalyst for permonosulfate (PMS) activation. The MEC-AD (Microbial electrolysis cell- Anaerobic digestion) reactor (K1) was designated as the control group. The experimental groups were the MEC-AD reactor (K2) with PMS and H-graphene, and the MEC-AD reactor (K3) with advanced oxidation as a synthetic CGW pretreatment. The results demonstrated that the COD removal rates of K1, K2 and K3 reactors were 76.7 %, 79.5 % and 87.4 %, while the total phenol removal rates were 74.1 %, 90.1 % and 100 %, respectively. Quinoline and indole were removed at rates greater than 90 % in the microbial electrolytic cell reactors K2 and K3, and 100 % in the K3 reactor. In K2 and K3, there was a considerable decrease in the abundance of <em>unclassified _ f _ Alcaligenaceae, Arenimonas</em> and <em>unclassified _ f _ Gracilibacteraceae</em> as compared to K1. The abundance of <em>unclassified _ p _ Zixibacteria, Candidatus _ Caldatribacterium, unclassified _ c _ JS1 and JGI-0000079-D21,</em> which are responsible for promoting the anaerobic degradation of long-chain fatty acids and anaerobic fermentation of acid production increased.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109512"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced oxidation enhanced microbial electrolysis cell coupled with anaerobic digestion: A novel approach to coal gasification wastewater treatment\",\"authors\":\"Yajie Li , Ou Wang , Yuyao Zhang , Weikang Kong , Nana Cheng , Salma Tabassum , Hongbo Liu\",\"doi\":\"10.1016/j.bej.2024.109512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coal gasification wastewater (CGW) contains a range of refractory and toxic organic pollutants with low biodegradability and significant biological toxicity. This study synthesized a hemin-graphene (H-graphene) catalyst for permonosulfate (PMS) activation. The MEC-AD (Microbial electrolysis cell- Anaerobic digestion) reactor (K1) was designated as the control group. The experimental groups were the MEC-AD reactor (K2) with PMS and H-graphene, and the MEC-AD reactor (K3) with advanced oxidation as a synthetic CGW pretreatment. The results demonstrated that the COD removal rates of K1, K2 and K3 reactors were 76.7 %, 79.5 % and 87.4 %, while the total phenol removal rates were 74.1 %, 90.1 % and 100 %, respectively. Quinoline and indole were removed at rates greater than 90 % in the microbial electrolytic cell reactors K2 and K3, and 100 % in the K3 reactor. In K2 and K3, there was a considerable decrease in the abundance of <em>unclassified _ f _ Alcaligenaceae, Arenimonas</em> and <em>unclassified _ f _ Gracilibacteraceae</em> as compared to K1. The abundance of <em>unclassified _ p _ Zixibacteria, Candidatus _ Caldatribacterium, unclassified _ c _ JS1 and JGI-0000079-D21,</em> which are responsible for promoting the anaerobic degradation of long-chain fatty acids and anaerobic fermentation of acid production increased.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109512\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24002997\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002997","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Advanced oxidation enhanced microbial electrolysis cell coupled with anaerobic digestion: A novel approach to coal gasification wastewater treatment
Coal gasification wastewater (CGW) contains a range of refractory and toxic organic pollutants with low biodegradability and significant biological toxicity. This study synthesized a hemin-graphene (H-graphene) catalyst for permonosulfate (PMS) activation. The MEC-AD (Microbial electrolysis cell- Anaerobic digestion) reactor (K1) was designated as the control group. The experimental groups were the MEC-AD reactor (K2) with PMS and H-graphene, and the MEC-AD reactor (K3) with advanced oxidation as a synthetic CGW pretreatment. The results demonstrated that the COD removal rates of K1, K2 and K3 reactors were 76.7 %, 79.5 % and 87.4 %, while the total phenol removal rates were 74.1 %, 90.1 % and 100 %, respectively. Quinoline and indole were removed at rates greater than 90 % in the microbial electrolytic cell reactors K2 and K3, and 100 % in the K3 reactor. In K2 and K3, there was a considerable decrease in the abundance of unclassified _ f _ Alcaligenaceae, Arenimonas and unclassified _ f _ Gracilibacteraceae as compared to K1. The abundance of unclassified _ p _ Zixibacteria, Candidatus _ Caldatribacterium, unclassified _ c _ JS1 and JGI-0000079-D21, which are responsible for promoting the anaerobic degradation of long-chain fatty acids and anaerobic fermentation of acid production increased.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.