{"title":"利用脑电信号对周期性交替睡眠模式进行分类","authors":"Megha Agarwal , Amit Singhal","doi":"10.1016/j.sleep.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic alternating patterns (CAP) occur in electroencephalogram (EEG) signals during non-rapid eye movement sleep. The analysis of CAP can offer insights into various sleep disorders. The first step is the identification of phases A and B for the CAP cycles. In this work, we develop an easy-to-implement accurate system to differentiate between CAP A and CAP B. Small segments of the EEG signal are processed using Gaussian filters to obtain sub-band components. Features are extracted using some statistical characteristics of these signal components. Minimum redundancy maximum relevance test is employed to identify the more significant features. Three different machine learning classifiers are considered and their performance is compared. The results are analyzed for both the balanced and unbalanced datasets. The k-nearest neighbour (kNN) classifier achieves 79.14 % accuracy and F-1 score of 79.24 % for the balanced dataset. The proposed method outperforms the existing methods for CAP classification. It is easy-to-implement and can be considered as a candidate for real-time deployment.</div></div>","PeriodicalId":21874,"journal":{"name":"Sleep medicine","volume":"124 ","pages":"Pages 282-288"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of cyclic alternating patterns of sleep using EEG signals\",\"authors\":\"Megha Agarwal , Amit Singhal\",\"doi\":\"10.1016/j.sleep.2024.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyclic alternating patterns (CAP) occur in electroencephalogram (EEG) signals during non-rapid eye movement sleep. The analysis of CAP can offer insights into various sleep disorders. The first step is the identification of phases A and B for the CAP cycles. In this work, we develop an easy-to-implement accurate system to differentiate between CAP A and CAP B. Small segments of the EEG signal are processed using Gaussian filters to obtain sub-band components. Features are extracted using some statistical characteristics of these signal components. Minimum redundancy maximum relevance test is employed to identify the more significant features. Three different machine learning classifiers are considered and their performance is compared. The results are analyzed for both the balanced and unbalanced datasets. The k-nearest neighbour (kNN) classifier achieves 79.14 % accuracy and F-1 score of 79.24 % for the balanced dataset. The proposed method outperforms the existing methods for CAP classification. It is easy-to-implement and can be considered as a candidate for real-time deployment.</div></div>\",\"PeriodicalId\":21874,\"journal\":{\"name\":\"Sleep medicine\",\"volume\":\"124 \",\"pages\":\"Pages 282-288\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389945724004465\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389945724004465","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在非快速眼动睡眠期间,脑电图(EEG)信号中会出现循环交替模式(CAP)。对 CAP 的分析可以帮助人们了解各种睡眠障碍。第一步是确定 CAP 周期的 A 相和 B 相。在这项工作中,我们开发了一种易于实施的精确系统来区分 CAP A 和 CAP B。利用这些信号分量的一些统计特征提取特征。采用最小冗余最大相关性测试来识别更重要的特征。考虑了三种不同的机器学习分类器,并对其性能进行了比较。对平衡和不平衡数据集的结果进行了分析。在平衡数据集上,k-近邻(kNN)分类器的准确率达到 79.14%,F-1 得分为 79.24%。在 CAP 分类方面,所提出的方法优于现有方法。该方法易于实施,可作为实时部署的候选方法。
Classification of cyclic alternating patterns of sleep using EEG signals
Cyclic alternating patterns (CAP) occur in electroencephalogram (EEG) signals during non-rapid eye movement sleep. The analysis of CAP can offer insights into various sleep disorders. The first step is the identification of phases A and B for the CAP cycles. In this work, we develop an easy-to-implement accurate system to differentiate between CAP A and CAP B. Small segments of the EEG signal are processed using Gaussian filters to obtain sub-band components. Features are extracted using some statistical characteristics of these signal components. Minimum redundancy maximum relevance test is employed to identify the more significant features. Three different machine learning classifiers are considered and their performance is compared. The results are analyzed for both the balanced and unbalanced datasets. The k-nearest neighbour (kNN) classifier achieves 79.14 % accuracy and F-1 score of 79.24 % for the balanced dataset. The proposed method outperforms the existing methods for CAP classification. It is easy-to-implement and can be considered as a candidate for real-time deployment.
期刊介绍:
Sleep Medicine aims to be a journal no one involved in clinical sleep medicine can do without.
A journal primarily focussing on the human aspects of sleep, integrating the various disciplines that are involved in sleep medicine: neurology, clinical neurophysiology, internal medicine (particularly pulmonology and cardiology), psychology, psychiatry, sleep technology, pediatrics, neurosurgery, otorhinolaryngology, and dentistry.
The journal publishes the following types of articles: Reviews (also intended as a way to bridge the gap between basic sleep research and clinical relevance); Original Research Articles; Full-length articles; Brief communications; Controversies; Case reports; Letters to the Editor; Journal search and commentaries; Book reviews; Meeting announcements; Listing of relevant organisations plus web sites.