萘作为煤基模型化合物的加压加氢气化和钴催化加氢气化行为

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Analytical and Applied Pyrolysis Pub Date : 2024-10-01 DOI:10.1016/j.jaap.2024.106773
Sumin Gu , Shuai Yan , Jun Feng , Rong Zhang , Xuan Qu
{"title":"萘作为煤基模型化合物的加压加氢气化和钴催化加氢气化行为","authors":"Sumin Gu ,&nbsp;Shuai Yan ,&nbsp;Jun Feng ,&nbsp;Rong Zhang ,&nbsp;Xuan Qu","doi":"10.1016/j.jaap.2024.106773","DOIUrl":null,"url":null,"abstract":"<div><div>The pressurized hydrogasification/catalytic hydrogasification behaviors of naphthalene as a coal-based model compound were investigated for the first time in a batch reactor. The composition of products was roundly analyzed by gas chromatography (GC), gas chromatography–mass spectrometer (GC-MS) and laser desorption time-of-flight mass spectrometry (TOF-MS). Based on the product analysis results, the detailed reaction pathways for naphthalene hydrogasification and the effects of cobalt on reaction pathways were elucidated. Naphthalene first destabilized during hydrogasification. Subsequently, the destabilized naphthalene either underwent stepwise hydrocracking by active hydrogen atoms to ultimately produce benzene and methane, or formed naphthalene free radicals to initiate condensation. Cobalt can regulate products distribution to boost methane, benzene and toluene yield by facilitating active hydrogen generation, despite it had a limited ability to facilitate the naphthalene destabilization at temperature below 700 °C. Whereas above 750 °C, cobalt can promote naphthalene destabilization, thereby remarkably enhancing the conversion of naphthalene. Furthermore, cobalt intensified condensation leading to a shift of molecular mass distribution of condensation products from 252 ∼ 500 Da to 750 ∼ 2000 Da. These phenomena supported similar findings in coal catalytic hydrogasification. The rise in temperature, initial H<sub>2</sub> pressure (<em>P</em><sub>0</sub>), and cobalt content all facilitated the cobalt catalyzed naphthalene hydrocracking to gaseous product, with temperature exerting a particularly significant effect. This trend was similar with cobalt catalyzed coal hydrogasification. For example, when temperature increased from 650 ℃ to 750 ℃, naphthalene conversion improved from 21.2 % to 49.6 %, and gas yield rose from 2.6 % to 29.4 % at 1 % Co and 1.3 MPa <em>P</em>₀. The investigation serves to shed light on the molecular-level understanding of the mechanism underpinning coal hydrogasification.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106773"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressurized hydrogasification and cobalt-catalyzed hydrogasification behaviors of naphthalene as a coal-based model compound\",\"authors\":\"Sumin Gu ,&nbsp;Shuai Yan ,&nbsp;Jun Feng ,&nbsp;Rong Zhang ,&nbsp;Xuan Qu\",\"doi\":\"10.1016/j.jaap.2024.106773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pressurized hydrogasification/catalytic hydrogasification behaviors of naphthalene as a coal-based model compound were investigated for the first time in a batch reactor. The composition of products was roundly analyzed by gas chromatography (GC), gas chromatography–mass spectrometer (GC-MS) and laser desorption time-of-flight mass spectrometry (TOF-MS). Based on the product analysis results, the detailed reaction pathways for naphthalene hydrogasification and the effects of cobalt on reaction pathways were elucidated. Naphthalene first destabilized during hydrogasification. Subsequently, the destabilized naphthalene either underwent stepwise hydrocracking by active hydrogen atoms to ultimately produce benzene and methane, or formed naphthalene free radicals to initiate condensation. Cobalt can regulate products distribution to boost methane, benzene and toluene yield by facilitating active hydrogen generation, despite it had a limited ability to facilitate the naphthalene destabilization at temperature below 700 °C. Whereas above 750 °C, cobalt can promote naphthalene destabilization, thereby remarkably enhancing the conversion of naphthalene. Furthermore, cobalt intensified condensation leading to a shift of molecular mass distribution of condensation products from 252 ∼ 500 Da to 750 ∼ 2000 Da. These phenomena supported similar findings in coal catalytic hydrogasification. The rise in temperature, initial H<sub>2</sub> pressure (<em>P</em><sub>0</sub>), and cobalt content all facilitated the cobalt catalyzed naphthalene hydrocracking to gaseous product, with temperature exerting a particularly significant effect. This trend was similar with cobalt catalyzed coal hydrogasification. For example, when temperature increased from 650 ℃ to 750 ℃, naphthalene conversion improved from 21.2 % to 49.6 %, and gas yield rose from 2.6 % to 29.4 % at 1 % Co and 1.3 MPa <em>P</em>₀. The investigation serves to shed light on the molecular-level understanding of the mechanism underpinning coal hydrogasification.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106773\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004285\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004285","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

首次在间歇反应器中研究了煤基模型化合物萘的加压加氢气化/催化加氢气化行为。通过气相色谱(GC)、气相色谱-质谱(GC-MS)和激光解吸飞行时间质谱(TOF-MS)对产物成分进行了全面分析。根据产物分析结果,阐明了萘加氢气化的详细反应途径以及钴对反应途径的影响。萘在加氢气化过程中首先脱稳。随后,失稳的萘在活性氢原子的作用下发生逐步加氢裂化,最终生成苯和甲烷,或者形成萘自由基,引发缩合反应。钴可以通过促进活性氢的生成来调节产物的分布,从而提高甲烷、苯和甲苯的产量,尽管它在温度低于 700 °C 时促进萘脱稳的能力有限。而在 750 °C 以上,钴能促进萘的脱稳,从而显著提高萘的转化率。此外,钴还能促进缩合,使缩合产物的分子质量分布从 252 ∼ 500 Da 变为 750 ∼ 2000 Da。这些现象证实了煤催化加氢气化的类似发现。温度、初始 H2 压力 (P0) 和钴含量的升高都有助于钴催化萘加氢裂化成气态产物,其中温度的影响尤为显著。钴催化煤加氢气化也有类似的趋势。例如,在 1 % Co 和 1.3 MPa P₀ 条件下,当温度从 650 ℃ 升至 750 ℃ 时,萘的转化率从 21.2 % 提高到 49.6 %,气体产率从 2.6 % 提高到 29.4 %。这项研究有助于从分子层面了解煤炭加氢气化的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pressurized hydrogasification and cobalt-catalyzed hydrogasification behaviors of naphthalene as a coal-based model compound
The pressurized hydrogasification/catalytic hydrogasification behaviors of naphthalene as a coal-based model compound were investigated for the first time in a batch reactor. The composition of products was roundly analyzed by gas chromatography (GC), gas chromatography–mass spectrometer (GC-MS) and laser desorption time-of-flight mass spectrometry (TOF-MS). Based on the product analysis results, the detailed reaction pathways for naphthalene hydrogasification and the effects of cobalt on reaction pathways were elucidated. Naphthalene first destabilized during hydrogasification. Subsequently, the destabilized naphthalene either underwent stepwise hydrocracking by active hydrogen atoms to ultimately produce benzene and methane, or formed naphthalene free radicals to initiate condensation. Cobalt can regulate products distribution to boost methane, benzene and toluene yield by facilitating active hydrogen generation, despite it had a limited ability to facilitate the naphthalene destabilization at temperature below 700 °C. Whereas above 750 °C, cobalt can promote naphthalene destabilization, thereby remarkably enhancing the conversion of naphthalene. Furthermore, cobalt intensified condensation leading to a shift of molecular mass distribution of condensation products from 252 ∼ 500 Da to 750 ∼ 2000 Da. These phenomena supported similar findings in coal catalytic hydrogasification. The rise in temperature, initial H2 pressure (P0), and cobalt content all facilitated the cobalt catalyzed naphthalene hydrocracking to gaseous product, with temperature exerting a particularly significant effect. This trend was similar with cobalt catalyzed coal hydrogasification. For example, when temperature increased from 650 ℃ to 750 ℃, naphthalene conversion improved from 21.2 % to 49.6 %, and gas yield rose from 2.6 % to 29.4 % at 1 % Co and 1.3 MPa P₀. The investigation serves to shed light on the molecular-level understanding of the mechanism underpinning coal hydrogasification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
期刊最新文献
Experimental and numerical investigation on pyrolysis and combustion behavior of biomass bast fibers: Hemp, flax and ramie fibers Ipoma batatas (sweet potato) leaf and leaf-based biochar as potential adsorbents for procion orange MX-2R removal from aqueous solution Pyrolysis and oxidation characteristics and energy self-sustaining process design of retired wind turbine blades A comprehensively experimental and kinetic modeling investigation of tetrahydropyran pyrolysis and oxidation in a jet-stirred reactor Methodologies for bio-oil characterization from biomass pyrolysis: A review focused on GC-MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1