Shannon R. Curley, José R. Ramírez-Garofalo, Marlen Acosta Alamo, Lisa L. Manne, Julie L. Lockwood, Richard R. Veit
{"title":"鸟类群落中季节性的侵蚀","authors":"Shannon R. Curley, José R. Ramírez-Garofalo, Marlen Acosta Alamo, Lisa L. Manne, Julie L. Lockwood, Richard R. Veit","doi":"10.1111/geb.13919","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Seasonality governs species composition at a given place and time. However, the effects of climate and land-use change can vary by season, altering species composition. These changes can lead to a loss of distinct seasonal community composition, representing a novel form of biotic homogenisation. We ask if breeding and winter bird communities are becoming more similar over time. If so, is homogenisation occurring more rapidly in winter than in the breeding season, and has the presence of individual species changed between seasons?</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Northeastern United States.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>1989–2019.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Two hundred thirty-eight bird species.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We use data from The National Audubon Society's Christmas Bird Count and the North American Breeding Bird Survey to test if winter and breeding bird communities have become more similar (homogenised). We evaluate this change using the Sørensen dissimilarity index, and its components of turnover (species replacement) and nestedness (a subset of a more species rich community) and describe the mechanism in which the seasonal winter and breeding bird communities are changing.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that winter and breeding bird communities are homogenising, driven by significant decrease in turnover and a marginal decrease nestedness. When viewing breeding and wintering communities separately, we observe different trends. Breeding communities are becoming more unique with decreasing turnover and nestedness. Winter communities are becoming more similar to each other, with decreasing turnover and nestedness. More breeding species are declining and species that are typically found in the winter and year-round residents are the main contributors to the homogenisation between seasons.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>We show for the first time homogenisation between winter and breeding bird communities over time across the northeastern United States. This insight into how individual species are faring between seasons, and how they impact community structure, can be used when implementing conservation measures for maintaining ecological functioning and integrity.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 12","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Erosion of Seasonality in Avian Communities\",\"authors\":\"Shannon R. Curley, José R. Ramírez-Garofalo, Marlen Acosta Alamo, Lisa L. Manne, Julie L. Lockwood, Richard R. Veit\",\"doi\":\"10.1111/geb.13919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Seasonality governs species composition at a given place and time. However, the effects of climate and land-use change can vary by season, altering species composition. These changes can lead to a loss of distinct seasonal community composition, representing a novel form of biotic homogenisation. We ask if breeding and winter bird communities are becoming more similar over time. If so, is homogenisation occurring more rapidly in winter than in the breeding season, and has the presence of individual species changed between seasons?</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Northeastern United States.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>1989–2019.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Two hundred thirty-eight bird species.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We use data from The National Audubon Society's Christmas Bird Count and the North American Breeding Bird Survey to test if winter and breeding bird communities have become more similar (homogenised). We evaluate this change using the Sørensen dissimilarity index, and its components of turnover (species replacement) and nestedness (a subset of a more species rich community) and describe the mechanism in which the seasonal winter and breeding bird communities are changing.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found that winter and breeding bird communities are homogenising, driven by significant decrease in turnover and a marginal decrease nestedness. When viewing breeding and wintering communities separately, we observe different trends. Breeding communities are becoming more unique with decreasing turnover and nestedness. Winter communities are becoming more similar to each other, with decreasing turnover and nestedness. More breeding species are declining and species that are typically found in the winter and year-round residents are the main contributors to the homogenisation between seasons.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>We show for the first time homogenisation between winter and breeding bird communities over time across the northeastern United States. This insight into how individual species are faring between seasons, and how they impact community structure, can be used when implementing conservation measures for maintaining ecological functioning and integrity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 12\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13919\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13919","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Seasonality governs species composition at a given place and time. However, the effects of climate and land-use change can vary by season, altering species composition. These changes can lead to a loss of distinct seasonal community composition, representing a novel form of biotic homogenisation. We ask if breeding and winter bird communities are becoming more similar over time. If so, is homogenisation occurring more rapidly in winter than in the breeding season, and has the presence of individual species changed between seasons?
Location
Northeastern United States.
Time Period
1989–2019.
Major Taxa Studied
Two hundred thirty-eight bird species.
Methods
We use data from The National Audubon Society's Christmas Bird Count and the North American Breeding Bird Survey to test if winter and breeding bird communities have become more similar (homogenised). We evaluate this change using the Sørensen dissimilarity index, and its components of turnover (species replacement) and nestedness (a subset of a more species rich community) and describe the mechanism in which the seasonal winter and breeding bird communities are changing.
Results
We found that winter and breeding bird communities are homogenising, driven by significant decrease in turnover and a marginal decrease nestedness. When viewing breeding and wintering communities separately, we observe different trends. Breeding communities are becoming more unique with decreasing turnover and nestedness. Winter communities are becoming more similar to each other, with decreasing turnover and nestedness. More breeding species are declining and species that are typically found in the winter and year-round residents are the main contributors to the homogenisation between seasons.
Main Conclusions
We show for the first time homogenisation between winter and breeding bird communities over time across the northeastern United States. This insight into how individual species are faring between seasons, and how they impact community structure, can be used when implementing conservation measures for maintaining ecological functioning and integrity.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.