{"title":"三种空间插值法在预测单一物质和混合物随时间变化的毒性方面的比较","authors":"Rui Qu, Yuanzhao Xiong, Ruiping Li, Jiwen Hu, Honglin Liu, Yingping Huang","doi":"10.1016/j.jhazmat.2024.136029","DOIUrl":null,"url":null,"abstract":"This study aims to optimize the time-dependent toxicity assessments for both single substances, particularly those causing hormesis, and mixtures that exhibit toxicological interactions. To achieve this, three time-dependent toxicity prediction methods were developed using geologic interpolation techniques: Inverse distance weighted (IDW), Kriging, and linear interpolation based on Delaunay triangulation (LDT). The toxicity of 7 single substances and 80 mixtures on <em>Vibrio qinghaiensis</em> sp.-Q67, along with 6 single substances and 19 mixtures on <em>Microcystis aeruginosa</em>, were assessed to evaluate the predictive accuracy of these methods. The coefficient of determination (R<sup>2</sup>), mean absolute error (MAE), and root-mean-square error (RMSE) were employed as performance metrics during cross-validation. The results showed that IDW underperformed LDT and Kriging in terms of both RMSE and MAE, indicating that LDT and Kriging had superior accuracy compared to IDW. Although LDT and Kriging demonstrated comparable predictive capabilities, LDT was identified as the more practical option for time-dependent toxicity prediction due to its simplicity and no requirement for parameter tuning. Consequently, LDT was presented as a new, efficient, and user-friendly tool for assessing the time-dependent toxicity of both individual chemicals and chemical mixtures. LDT will help to better assess the ecological risks of chemicals.","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"204 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of three spatial interpolation methods in predicting time-dependent toxicities of single substances and mixtures\",\"authors\":\"Rui Qu, Yuanzhao Xiong, Ruiping Li, Jiwen Hu, Honglin Liu, Yingping Huang\",\"doi\":\"10.1016/j.jhazmat.2024.136029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to optimize the time-dependent toxicity assessments for both single substances, particularly those causing hormesis, and mixtures that exhibit toxicological interactions. To achieve this, three time-dependent toxicity prediction methods were developed using geologic interpolation techniques: Inverse distance weighted (IDW), Kriging, and linear interpolation based on Delaunay triangulation (LDT). The toxicity of 7 single substances and 80 mixtures on <em>Vibrio qinghaiensis</em> sp.-Q67, along with 6 single substances and 19 mixtures on <em>Microcystis aeruginosa</em>, were assessed to evaluate the predictive accuracy of these methods. The coefficient of determination (R<sup>2</sup>), mean absolute error (MAE), and root-mean-square error (RMSE) were employed as performance metrics during cross-validation. The results showed that IDW underperformed LDT and Kriging in terms of both RMSE and MAE, indicating that LDT and Kriging had superior accuracy compared to IDW. Although LDT and Kriging demonstrated comparable predictive capabilities, LDT was identified as the more practical option for time-dependent toxicity prediction due to its simplicity and no requirement for parameter tuning. Consequently, LDT was presented as a new, efficient, and user-friendly tool for assessing the time-dependent toxicity of both individual chemicals and chemical mixtures. LDT will help to better assess the ecological risks of chemicals.\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Comparison of three spatial interpolation methods in predicting time-dependent toxicities of single substances and mixtures
This study aims to optimize the time-dependent toxicity assessments for both single substances, particularly those causing hormesis, and mixtures that exhibit toxicological interactions. To achieve this, three time-dependent toxicity prediction methods were developed using geologic interpolation techniques: Inverse distance weighted (IDW), Kriging, and linear interpolation based on Delaunay triangulation (LDT). The toxicity of 7 single substances and 80 mixtures on Vibrio qinghaiensis sp.-Q67, along with 6 single substances and 19 mixtures on Microcystis aeruginosa, were assessed to evaluate the predictive accuracy of these methods. The coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error (RMSE) were employed as performance metrics during cross-validation. The results showed that IDW underperformed LDT and Kriging in terms of both RMSE and MAE, indicating that LDT and Kriging had superior accuracy compared to IDW. Although LDT and Kriging demonstrated comparable predictive capabilities, LDT was identified as the more practical option for time-dependent toxicity prediction due to its simplicity and no requirement for parameter tuning. Consequently, LDT was presented as a new, efficient, and user-friendly tool for assessing the time-dependent toxicity of both individual chemicals and chemical mixtures. LDT will help to better assess the ecological risks of chemicals.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.