生态网络的分级协同进化单元。

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-10-02 DOI:10.1111/ele.14501
Kate Pereira Maia, Paulo Roberto Guimarães Jr
{"title":"生态网络的分级协同进化单元。","authors":"Kate Pereira Maia,&nbsp;Paulo Roberto Guimarães Jr","doi":"10.1111/ele.14501","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In ecological networks, cohesive groups of species may shape the evolution of interactions, serving as coevolutionary units. Ranging across network scales, from motifs to isolated components, elucidating which cohesive groups are more determinant for coevolution remains a challenge in ecology. We address this challenge by integrating 376 empirical mutualistic and antagonistic networks and coevolutionary models. We identified cohesive groups at four network scales containing a significant proportion of potential direct coevolutionary effects. Cohesive groups displayed hierarchical organisation, and potential coevolutionary effects overflowing lower-scale groups were contained by higher-scale groups, underscoring the hierarchy's impact. However, indirect coevolutionary effects blurred group boundaries and hierarchy, particularly under strong selection from ecological interactions. Thus, under strong selection, indirect effects render networks themselves, and not cohesive groups, as the likely coevolutionary units of ecological systems. We hypothesise hierarchical cohesive groups to also shape how other forms of direct and indirect effects propagate in ecological systems.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14501","citationCount":"0","resultStr":"{\"title\":\"The Hierarchical Coevolutionary Units of Ecological Networks\",\"authors\":\"Kate Pereira Maia,&nbsp;Paulo Roberto Guimarães Jr\",\"doi\":\"10.1111/ele.14501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In ecological networks, cohesive groups of species may shape the evolution of interactions, serving as coevolutionary units. Ranging across network scales, from motifs to isolated components, elucidating which cohesive groups are more determinant for coevolution remains a challenge in ecology. We address this challenge by integrating 376 empirical mutualistic and antagonistic networks and coevolutionary models. We identified cohesive groups at four network scales containing a significant proportion of potential direct coevolutionary effects. Cohesive groups displayed hierarchical organisation, and potential coevolutionary effects overflowing lower-scale groups were contained by higher-scale groups, underscoring the hierarchy's impact. However, indirect coevolutionary effects blurred group boundaries and hierarchy, particularly under strong selection from ecological interactions. Thus, under strong selection, indirect effects render networks themselves, and not cohesive groups, as the likely coevolutionary units of ecological systems. We hypothesise hierarchical cohesive groups to also shape how other forms of direct and indirect effects propagate in ecological systems.</p>\\n </div>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14501\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14501\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14501","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在生态网络中,物种的内聚群体可能会影响相互作用的进化,成为共同进化的单位。网络尺度跨度很大,从主题到孤立的组成部分,阐明哪些内聚群体对共同进化更具决定性仍然是生态学中的一项挑战。我们通过整合 376 个经验性互生和拮抗网络以及共同进化模型来应对这一挑战。我们在四个网络尺度上发现了内聚群体,其中包含相当大比例的潜在直接共同进化效应。内聚群体呈现出等级组织结构,较低尺度群体溢出的潜在共同进化效应被较高尺度群体所包含,这突出了等级制度的影响。然而,间接的共同进化效应模糊了群体的边界和等级,特别是在生态相互作用的强烈选择下。因此,在强选择条件下,间接效应使网络本身而不是内聚群体可能成为生态系统的共同进化单元。我们假设分层的内聚群体也会影响其他形式的直接和间接效应在生态系统中的传播方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Hierarchical Coevolutionary Units of Ecological Networks

In ecological networks, cohesive groups of species may shape the evolution of interactions, serving as coevolutionary units. Ranging across network scales, from motifs to isolated components, elucidating which cohesive groups are more determinant for coevolution remains a challenge in ecology. We address this challenge by integrating 376 empirical mutualistic and antagonistic networks and coevolutionary models. We identified cohesive groups at four network scales containing a significant proportion of potential direct coevolutionary effects. Cohesive groups displayed hierarchical organisation, and potential coevolutionary effects overflowing lower-scale groups were contained by higher-scale groups, underscoring the hierarchy's impact. However, indirect coevolutionary effects blurred group boundaries and hierarchy, particularly under strong selection from ecological interactions. Thus, under strong selection, indirect effects render networks themselves, and not cohesive groups, as the likely coevolutionary units of ecological systems. We hypothesise hierarchical cohesive groups to also shape how other forms of direct and indirect effects propagate in ecological systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Reproductive Interference Alters Species Coexistence in Nematodes due to Asymmetric Sperm-Induced Harm Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs Intraspecific Diversity in Thermal Performance Determines Phytoplankton Ecological Niche A Probabilistic View of Forbidden Links: Their Prevalence and Their Consequences for the Robustness of Plant–Hummingbird Communities A Non-Equilibrium Species Distribution Model Reveals Unprecedented Depth of Time Lag Responses to Past Environmental Change Trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1