{"title":"门冬酰胺黄酮通过抑制 PIN1 诱导铁变态反应,从而缓解类风湿性关节炎成纤维细胞样滑膜细胞的增殖、迁移、侵袭和炎症。","authors":"Yan Ma, Hongjun Lin, Yunman Li, Zhuoling An","doi":"10.1007/s12013-024-01563-8","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a systemic autoimmune disease that is prevalent worldwide and seriously threatens human health. RA-fibroblast-like synoviocytes (FLS) play important roles in almost all aspects of RA progression. This study aimed to study the effect of Amentoflavone (AMF), a polyphenol compound derived from extracts of Selaginella tamariscina, on the abnormal biological behaviors of RA-FLS. The immortalized human RA-FLS cell line (MH7A) was treated with AMF or transfected with small interfering RNAs (siRNAs) targeting peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1). Then, cell viability was detected by CCK-8 assay. EDU staining, wound healing and transwell assays were employed to measure the capacities of MH7A cell proliferation, migration and invasion. The levels of inflammatory factors were assessed using ELISA kits. Additionally, ferroptosis was analyzed by detecting Fe<sup>2+</sup> content, lipid reactive oxygen species (ROS) level and expression of ferroptosis-related proteins. Pull-down assay was employed to verify the targeted binding of AMF to PIN1. Further, PIN1 overexpression or ferroptosis inhibitor Ferrostatin-1 (Fer-1) addition was conducted to elucidate the regulatory mechanism of AMF on PIN1 and ferroptosis. Results revealed that AMF intervention or PIN1 knockdown inhibited the proliferation, migration, invasion and inflammation in MH7A cells. AMF facilitated lipid peroxidation and ferroptosis in MH7A cells. Moreover, AMF targeted inhibition of PIN1 expression, and PIN1 overexpression restored the promoting effect of AMF on lipid peroxidation and ferroptosis in MH7A cells. Besides, Fer-1 reversed the impacts of AMF on the abnormal biological behaviors of MH7A cells. In summary, AMF induced ferroptosis to inhibit the proliferation, migration, invasion and inflammation in RA-FLS by inhibiting PIN1, providing a promising candidate for RA treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1.\",\"authors\":\"Yan Ma, Hongjun Lin, Yunman Li, Zhuoling An\",\"doi\":\"10.1007/s12013-024-01563-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rheumatoid arthritis (RA) is a systemic autoimmune disease that is prevalent worldwide and seriously threatens human health. RA-fibroblast-like synoviocytes (FLS) play important roles in almost all aspects of RA progression. This study aimed to study the effect of Amentoflavone (AMF), a polyphenol compound derived from extracts of Selaginella tamariscina, on the abnormal biological behaviors of RA-FLS. The immortalized human RA-FLS cell line (MH7A) was treated with AMF or transfected with small interfering RNAs (siRNAs) targeting peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1). Then, cell viability was detected by CCK-8 assay. EDU staining, wound healing and transwell assays were employed to measure the capacities of MH7A cell proliferation, migration and invasion. The levels of inflammatory factors were assessed using ELISA kits. Additionally, ferroptosis was analyzed by detecting Fe<sup>2+</sup> content, lipid reactive oxygen species (ROS) level and expression of ferroptosis-related proteins. Pull-down assay was employed to verify the targeted binding of AMF to PIN1. Further, PIN1 overexpression or ferroptosis inhibitor Ferrostatin-1 (Fer-1) addition was conducted to elucidate the regulatory mechanism of AMF on PIN1 and ferroptosis. Results revealed that AMF intervention or PIN1 knockdown inhibited the proliferation, migration, invasion and inflammation in MH7A cells. AMF facilitated lipid peroxidation and ferroptosis in MH7A cells. Moreover, AMF targeted inhibition of PIN1 expression, and PIN1 overexpression restored the promoting effect of AMF on lipid peroxidation and ferroptosis in MH7A cells. Besides, Fer-1 reversed the impacts of AMF on the abnormal biological behaviors of MH7A cells. In summary, AMF induced ferroptosis to inhibit the proliferation, migration, invasion and inflammation in RA-FLS by inhibiting PIN1, providing a promising candidate for RA treatment.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01563-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01563-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1.
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is prevalent worldwide and seriously threatens human health. RA-fibroblast-like synoviocytes (FLS) play important roles in almost all aspects of RA progression. This study aimed to study the effect of Amentoflavone (AMF), a polyphenol compound derived from extracts of Selaginella tamariscina, on the abnormal biological behaviors of RA-FLS. The immortalized human RA-FLS cell line (MH7A) was treated with AMF or transfected with small interfering RNAs (siRNAs) targeting peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1). Then, cell viability was detected by CCK-8 assay. EDU staining, wound healing and transwell assays were employed to measure the capacities of MH7A cell proliferation, migration and invasion. The levels of inflammatory factors were assessed using ELISA kits. Additionally, ferroptosis was analyzed by detecting Fe2+ content, lipid reactive oxygen species (ROS) level and expression of ferroptosis-related proteins. Pull-down assay was employed to verify the targeted binding of AMF to PIN1. Further, PIN1 overexpression or ferroptosis inhibitor Ferrostatin-1 (Fer-1) addition was conducted to elucidate the regulatory mechanism of AMF on PIN1 and ferroptosis. Results revealed that AMF intervention or PIN1 knockdown inhibited the proliferation, migration, invasion and inflammation in MH7A cells. AMF facilitated lipid peroxidation and ferroptosis in MH7A cells. Moreover, AMF targeted inhibition of PIN1 expression, and PIN1 overexpression restored the promoting effect of AMF on lipid peroxidation and ferroptosis in MH7A cells. Besides, Fer-1 reversed the impacts of AMF on the abnormal biological behaviors of MH7A cells. In summary, AMF induced ferroptosis to inhibit the proliferation, migration, invasion and inflammation in RA-FLS by inhibiting PIN1, providing a promising candidate for RA treatment.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.