Alice H L Bong, Mélanie Robitaille, Sichun Lin, Amy McCart-Reed, Michael Milevskiy, Stéphane Angers, Sarah J Roberts-Thomson, Gregory R Monteith
{"title":"TMCO1 在乳腺癌中上调,并调节乳腺癌细胞对促凋亡药物的反应。","authors":"Alice H L Bong, Mélanie Robitaille, Sichun Lin, Amy McCart-Reed, Michael Milevskiy, Stéphane Angers, Sarah J Roberts-Thomson, Gregory R Monteith","doi":"10.1038/s41420-024-02183-0","DOIUrl":null,"url":null,"abstract":"<p><p>The release of Ca<sup>2+</sup> ions from endoplasmic reticulum calcium stores is a key event in a variety of cellular processes, including gene transcription, migration and proliferation. This release of Ca<sup>2+</sup> often occurs through inositol 1,4,5-triphosphate receptors and the activity of these channels and the levels of stored Ca<sup>2+</sup> in the endoplasmic reticulum are important regulators of cell death in cancer cells. A recently identified Ca<sup>2+</sup> channel of the endoplasmic reticulum is transmembrane and coiled-coil domains 1 (TMCO1). In this study, we link the overexpression of TMCO1 with prognosis in node-positive basal breast cancer patients. We also identify interacting proteins of TMCO1, which include endoplasmic reticulum-resident proteins involved in Ca<sup>2+</sup> regulation and proteins directly involved in nucleocytoplasmic transport. Interacting proteins included nuclear transport proteins and TMCO1 was shown to have both nuclear and endoplasmic reticulum localisation in MDA-MB-231 basal breast cancer cells. These studies also define a role for TMCO1 in the regulation of breast cancer cells in their sensitivity to BCL-2/MCL-1 inhibitors, analogous to the role of inositol 1,4,5-triphosphate receptors in the regulation of cell death pathways activated by these agents.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"421"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445413/pdf/","citationCount":"0","resultStr":"{\"title\":\"TMCO1 is upregulated in breast cancer and regulates the response to pro-apoptotic agents in breast cancer cells.\",\"authors\":\"Alice H L Bong, Mélanie Robitaille, Sichun Lin, Amy McCart-Reed, Michael Milevskiy, Stéphane Angers, Sarah J Roberts-Thomson, Gregory R Monteith\",\"doi\":\"10.1038/s41420-024-02183-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The release of Ca<sup>2+</sup> ions from endoplasmic reticulum calcium stores is a key event in a variety of cellular processes, including gene transcription, migration and proliferation. This release of Ca<sup>2+</sup> often occurs through inositol 1,4,5-triphosphate receptors and the activity of these channels and the levels of stored Ca<sup>2+</sup> in the endoplasmic reticulum are important regulators of cell death in cancer cells. A recently identified Ca<sup>2+</sup> channel of the endoplasmic reticulum is transmembrane and coiled-coil domains 1 (TMCO1). In this study, we link the overexpression of TMCO1 with prognosis in node-positive basal breast cancer patients. We also identify interacting proteins of TMCO1, which include endoplasmic reticulum-resident proteins involved in Ca<sup>2+</sup> regulation and proteins directly involved in nucleocytoplasmic transport. Interacting proteins included nuclear transport proteins and TMCO1 was shown to have both nuclear and endoplasmic reticulum localisation in MDA-MB-231 basal breast cancer cells. These studies also define a role for TMCO1 in the regulation of breast cancer cells in their sensitivity to BCL-2/MCL-1 inhibitors, analogous to the role of inositol 1,4,5-triphosphate receptors in the regulation of cell death pathways activated by these agents.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"421\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02183-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02183-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
TMCO1 is upregulated in breast cancer and regulates the response to pro-apoptotic agents in breast cancer cells.
The release of Ca2+ ions from endoplasmic reticulum calcium stores is a key event in a variety of cellular processes, including gene transcription, migration and proliferation. This release of Ca2+ often occurs through inositol 1,4,5-triphosphate receptors and the activity of these channels and the levels of stored Ca2+ in the endoplasmic reticulum are important regulators of cell death in cancer cells. A recently identified Ca2+ channel of the endoplasmic reticulum is transmembrane and coiled-coil domains 1 (TMCO1). In this study, we link the overexpression of TMCO1 with prognosis in node-positive basal breast cancer patients. We also identify interacting proteins of TMCO1, which include endoplasmic reticulum-resident proteins involved in Ca2+ regulation and proteins directly involved in nucleocytoplasmic transport. Interacting proteins included nuclear transport proteins and TMCO1 was shown to have both nuclear and endoplasmic reticulum localisation in MDA-MB-231 basal breast cancer cells. These studies also define a role for TMCO1 in the regulation of breast cancer cells in their sensitivity to BCL-2/MCL-1 inhibitors, analogous to the role of inositol 1,4,5-triphosphate receptors in the regulation of cell death pathways activated by these agents.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.